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Abstract

In [1] and [21 we presented a model study of a posteriori error estimators in
the interior of finite element meshes using a computer-based methodology. In this
paper we investigate further the quality of element-residual error estimators. We
analyzed several versions of the element-residual estimator and based on this study
we propose recipes for robust estimators.

2



1 Introduction

A-posteriori error estimation has become an important aspect in the practical
application of the finite element method. As a result much interest has focused
on the design of a-posteriori error estimators, their experimental verification and
their use in adaptive procedures; see for example [1-65] and the references therein.
There are two major classes of error estimators:

1. Residual estimators: These estimators employ the solutions of local boundary-
value problems posed in an element or a small patch of elements. The data
for the local problems are given by the local residuals. For various versions
of element residual estimators see [1-26). It is also possible to construct
residual-type estimators by employing the method of hypercircle [27,30] the
aim being to construct a global upper estimate of the error. Estimators of
this type have been proposed in [30-44].

2. Estimators based on local averaging: Estimators belonging to this class em-
ploy a smoothened flux-field which is obtained by some local averaging (post-
processing). The smoothened flux is then compared with the finite-element
flux to construct an estimate of the error. Estimators of this type are given
in [45-62]. It can be shown that estimators based on local averaging can also
be interpreted as residual estimators (see [63]). For other types of estimators
see [64] and [65].

In this paper we will focus on element residual estimators. Let Th be a mesh
and let uh be a finite element solution for Laplace's equation on this mesh. Let 7"

denote an interior element of Th and let us define the following element-residual
boundary-value problem:

-A6 = Au h  in 7-

_ - Oh/ (1.1)

an 8r 5 on Or

Here P9, is an approximation of - which is obtained by post-processing the
computed finite element flux in the eement and its neighbors such that it satisfies

L7 l' (P?-~ v + j(Au,)t, = 0 V v E V9(r.) (1.2)

We will call Pa, the q-order equilibrated flux. Note that Pa, will then automatically
satisfy the consistency condition (which is obtained from (1.2) by letting q = 0)
and hence the Neumann problem (1.1) has a solution. Further let &9 +k) E Sp+()
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be an approximate solution, with Sp+k(r) C 1pp+k(r) with k > 1. We define the
element error indicator

III:- lll '+k) ll(1.3)

By Ii IJJ. we mean the energy-norm over the element r; for the particular case of
the Laplacian we have IIjjvjjI:= II IVvI IIL2(,).

Given a mesh we will denote by w," a simply connected set of elements and
we will refer to it as a mesh-cell. The mesh-cell is meant as a typical pattern of
elements which appears in several places in the mesh. The word pattern refers to
the geometry of the mesh in the mesh-cell and a few surrounding mesh-layers. We
will be interested to study the quality of estimators C , of the error in wh, where

F 2~= 
(1.4)

The quality will be measured by the effectivity index

S(1.5)
0 IIIehJIILO (.5

Here e&: U: X - uh denotes the exact error. The global effectivity index, icTh, is

obtained from (1.5) by letting woa =_ Th.
Let U, T be the class of exact solutions, meshes under consideration and let Wo1

be a mesh-cell with fixed topology (but not size) which appears in all the meshes in
T. We will call the estimator -T = o (U,'T CC'ij )-proper if for any solution
Ugx E U we have

CL (UT) < r1 < C_ u°(U,T) (1.6)

The estimator is called asymptotically (U, T)-exact in wc'% if for any UEX E U and
any sequence of meshes {T, ) from T, such that

11%h,- xIII-' 0 as i--+ oo (1.7a)

we have

IC -- 1 (1.7b)wo

Here {woh')?, denotes a sequence of mesh-cells of fixed geometry. If Lh >1

then E% is called an (U, T)- upper estimator and if 0 < 1 then C is called a

(U, T)-lotoer estimator.
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We will be interested in the values of ,*, Cj 6 for which (1.6) holds asymptot-
ically in the limit h --+ 0 (details about the precise meaning of the limit will be
given below). We can then quantify the quality of the estimator in a mesh-cell Wh

by defining the robustness index in wo" for the class of solutions U (see also (2])
IZ,,U a(l - h 1 + 1 )
(u) = max( 1 +11 -l C (1.8)

We will say that the estimator is robust in who if the robustness index is sufficiently
small (for example less than 0.5).

In this paper we will study the robustness of element-residual estimators for
interior mesh-cells (i.e. for mesh-cells which are separated by a few mesh-layers
from the boundary). Moreover we will consider the class of solutions U which occur
in practical engineering computations in two-dimensions i.e. the class of solutions
which are infinitely smooth except at a finite number of algebraic-type singularities
on the boundary or on the material-interfaces. Further, we will assume that the
meshes Th are constructed adaptively and are nearly equilibrated in the energy-

norm. Under these assumptions it is possible to compute the values of CL I eU6
and Rh, using the computer-based methodology given in [1] and [2]. For a given

mesh-cell woh the robustness of an element-residual estimator depends on:

(a) The choice of the solution space S(Pk)(T") for the local problem. We will
demonstrate that the best robustness is obtained by selecting S(P+k)(r) to be
a bubble-space of polynomials of degree (p + 1).

(b) The technique for the construction of the equilibrated boundary-flux Pa'.
We show that the robustness of the estimator depends on the order q of the
equilibrated flux. By letting q = p we obtain the best robustness.

Below we will study the influence of factors (a), (b) on the robustness of element-
residual estimators for the model problems of orthotropic heat-conduction and
plane-elasticity.

Following this Introduction we will give preliminaries on the model problems
and an outline of the methodology for assessing the robustness of estimators for
interior mesh-cells. We describe the element residual estimators implemented, we
present the model study of the robustness of the estimators for meshes of triangles
and quadrilaterals and we give concrete recommendations about which versions of
the element residual estimators are robust and should be employed in practical
computations.



2 The model problems

We shall consider the vector-valued boundary-value problem

Li(u) :=- 2-(oj(u)) = fi in n

ui = 0 on rD (2.1)

2

E .iJ(U)nJ=i on rN
j=1

where i = 1, 2.

Here fl C R 2 is a bounded domain with boundary Of = rD U riN;

n := (nj, n2) is the outward pointing unit-normal on rv;

fi, i = 1, 2 are the components of the load-vector (body-force);

i, i = 1, 2 are the components of the normal-flux vector (traction) applied on rN;

rD # 0, rD n rN = o; u = (ulu 2) is the solution-vector (displacement);

1 9Ou a u 2

fij(lg) "= 2( j + !Ir, O'ij(U) E aijktkkt(u) , ij = 1,2 (2.2)
k,1=1

are the components of the flux (strain, stress);

ajk, i,j, k, I = 1,2, are the material-coefficients (elastic constants) which in the
case of isotropic plane elasticity are given by aijkt = p(6s, 6 kt + bitbkj) + Abikbikt
where bij is Kronecker's delta and A, p are Lame's constants.

We also introduce the scalar elliptic boundary-value problem (heat-conduction
in orthotropic medium), namely

L(U) := - K.,au =f in 0r,= -l k o X1

u = 0 on rD (2.3)

2

X qk(u)nk= on rN
k=1
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2 Ou
Here f denotes the heat-source; § is the boundary heat-flux; qk(u) E Kk -, k =

1=1 (xf
1,2 are the components of the flux-vector (heat-flux) and Kkt, k,t = 1,2, are the
entries of the thermal-conductivity matrix which is symmetric, positive definite. We
will denote the principal values of the thermal-conductivity matrix by Kmtu, Kmaz.

Let us now cast the model problems in variational form.. Let us denote the
space of test-functions by

{v = (VI, V2) Ivi E H1 (fl) , vi = 0 on PD} (2.4)

The variational form of the boundary-value problem (2.1) is now posed as:

Find u E H1 such that

,2 2

Bui)=1 jfivi +j f3iv, vE (2.5)

where the bilinear form B : H'r x -. R is defined by
2 19uj 9vi

Bn(u,v) f a (2.6

in (2.6)ij~k f=l aj Oxf C'Xk

The energy-norm over any subdomain S C fl is defined by

IIlVlls := /~(v) (2.7)

where Bs(u, v) has the obvious meaning.

In the case of the scalar elliptic problem given by (2.3) the bilinear form is given

by b0(u, v) := 1 ..,Kk -"- The weak-solution of (2.3) satisfies:
k,1=1 1 Xk

Find u E HrD := {v E H'(fl) v =-0 on r }such that

bf.(u,V) =jinfv+ IN § V vE Hr'D (2.8)

The energy-norm in any subdomain S C fl is defined by ivills :=- v).

Let T = {T} be a family of meshes of triangles or quadrilaterals with straight
edges. It is assumed that the family is regular. (For the triangles the minimal
angle of all the triangles is bounded below by a positive constant, the same for all
the meshes. For the quadrilaterals see conditions (37.40) in Ciarlet [67].) Here we
will employ only meshes of squares with local refinements; for a description of the
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properties of the meshes and the corresponding finite element spaces see (10], [121,
[13], [15], [761. We introduce the conforming finite-element spaces for the scalar
model problem:

S{(Th):={u E C0 (f1)j uj, E S,(7-k), k = 1,...,M(Th)}, (2.9)

The corresponding spaces of vector-valued functions for the elasticity problem are
defined similarly. Here S'(rk) denotes the finite-element space over rk. For the
meshes of triangles Sh,(Tk) PP( k), while for the meshes of quadrilaterals

Shp(Tr ) { w E C'(Tk)jI woa E SP(f)}1 (2.10)

where + :- (-1, 1)2 is the master-element and F, is the bilinear mapping of
onto Tk; M(T) is the number of elements in Th and SP(f) denotes the polynomial
space in the master-element.

For the quadrilaterals we will consider the following choices for the definition
of the polynomial space SP(f) (see also [76]).

a. Tensor-product (bi-p) polynomial space of degree p.

(.P {P (-4,2)= i aidijz &}i (2.11)
0 ijj

b. Serendipity (trunc) polynomial space of degree p.

PI PP(& 1 ,& 2 ) Xj + p, I 2 + 1 ,,& i } (2.12)

o<+j<p

c. Intermediate polynomial space of degree p.

p-1
S!(nX):=PI = L a',,z1x2 +L Ckk,k+X 4 .k+1 (2.13)

O04j:5p

We let Shr := Sh(Th)nHlHA denote the discrete test-space. The finite element
solution uh (for the heat-conduction problem) satisfies:

Find Uh E SrD such that

bQ(uh, Vh) = fv + j vh  V v& E Sh,rD (2.14)

The error is eh := u -uh.The finite element solution and the error for the elasticity
problem are defined similarly.
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The error satisfies the residual-equation:

bn(e&, v) = E -FI(vh) V vh E Hr' (2.15)
'rET,

where the residual-functional for element T is defined by

rvj + E j J v , vEH'(T) (2.16)

where E(T) is the set of edges for element T, r, is the interior-residual in element
Ir,

r. := -C(udJ) + f (2.17)

and J, is the jump or edge-residual associated with the edge e

[q(ujj,.) - q(uI..)]" n , e E ,.

J, := 4(2.18)
2[§ - q(u rout) -, , C c rN

Here Eint denote the set of edges in the interior of the domain n denotes the unit-
normal assigned to the edge f and ri,,, rut denote the elements attached to the
edge, as shown in Fig. 1.

3 Outline of the theoretical setting

The theoretical setting will be outlined below (for the details see [1]) for the
special class of locally periodic meshes which are defined as follows. Let 0 < H <
H0 z0=(xox)Ef,

S(z 0 ,H) := {X= (XI,z 2 )j ~jx, j <H, i=1,2} (3.1)

and assume Ho is sufficiently small such that .9(0 , HO) C 01. Further, let 7 be a
set of multi-indices (ij), XUi ) = 1A ji E fi and

c(00"J), h) := S(z('j), h) C S(z°, H), (i,j) E 7 (3.2)

be the set of the h-cells (or cells) which cover exactly S(z0 , H), as is for example
shown in Fig. 2. We will refer to S(z °, H) as the subdomain of periodicity of the
mesh centered at ro . We will denote by Z := S(O, 1) the unit- (master-) cell Z, the
h-cell is an h-scaled and translated master-cell.

9



Let T be a mesh of triangles or squares on the master-cell (the master-mesh)
and Th('j ) be the mesh on c(z(j), h) which is the scaled and translated image
of T. We will consider the family T of locally periodic meshes. Let Th E T and

T (z', H) be the restriction of T, on S(z, H) and T ( "j ) the restriction of T (z °, H)
on c(z('j), h). We assume that T = T"" , (i,j) E -y i.e. Th (z, H) is made
by the periodic repetition of the h-scaled master mesh. Outside the subdomain
S(z0 , H) the mesh is arbitrary; it could have curved elements, refinements, etc.

Let Q be a polynomial of degree (p + 1) defined over the master-cell Z and let
be the master-mesh. Then denote

P:= Q _ QINT (3.3)

where QINT is the interpolant of degree p of the function Q defined over the master-
mesh T (for which h = 1). Any polynomial of degree p on an element Tk belongs to
S'(rk) and hence any polynomial of degree p on S(z ° , H) belongs to S"'(Th (z ° , H)).
It follows that p defined in (3.3) is E-periodic (this can be show, exactly as in [11)
and

P(1,' 2) = P(-1, 2 ), P21 < 1 (3.4a)

p(z 1,,1)- p(x 1,-1), IP11 < 1 (3.4b)

Let

Hp1RM~ {u E H'(Z) u satisfies (3.4) }(3.5)
and

SP, PER(Z) := {u E HpER() j u. E SIP(f), V if E t} (3.6)

Further let -P E SpER(Z) such that

ba(=P,j) = bjp,i) V F) E Sf',pER(M) (3.7a)

and

S(p - p) = 0 (3.7b)

Note that the function ,P exists and is uniquely determined (we will compute it
numerically in the examples). Let us also define ,b E H' (Z) by

,p:= p -_= Q - i where ti := QINT + , (3.8)

10



Let 4' E HIER(c(z('j', h)) be the function 4, defined above, scaled and translated
onto the cell c (z() }, h) of the mesh in S(z ° , H) i.e.

) h 0(i), (04() = h' 1 1 (39)

where (z - z("')), z E c(z(i),h). It is easy to see that 0.h can be

periodically extended over S(z °, HI). We will also let wh(z) := t(i).
In (75] we proved the following theorem for Poisson's equation based on the

theory of interior estimates (see [691):

Theorem 1. Let H1 < H < H' and assume that the following assumptions hold
with

6p + 1 )t=---p , /3= p+l-c, C= 0o- 6 (6ip+1) (.0

Assume that the exact solution u satisfies

IID*IILo(S(O)) 5 K < oo, 0_ I< --- p + 2 (3.11a)

810alu
where a :=(a,,,,), D*. : or I2 Ial := C1 + C2 , and

R2 a3 > 0 where a. := (Dau)(x° ) (3.11b)

Further assume that the mesh Th is such that

JIehIIL2(S( ,OH)) S Ch ' H1 , with /3> (p + 1) - (3.12)

Moreover assume that the meshes Th in S(z ° , H) are such that

CH < h < 2H' (3.13)

Then for any z E S(=° , H1)Ie-, (z z oP- (3.14)
with ao > 0, JAI _ 1 and C independent of h.

Theorem 2. Let the assumptions of Theorem 1 hold. Then

IIIuI - WhIIIS(.,OH ) = IllUh - QNT - 1) l , Ch-° IIl1ll1ls(.o,1) (3.15)

11



where C is independent of H and h and a, > 0. See [1] for details of the proof.

Remark 3.1. The theorems assume that the mesh is periodic and that the solution is
smooth in a small subdomain (i.e. S(z0 , H)) in the interior of the domain. Outside
the subdomain we assume neither periodicity of the mesh nor smoothness of the
solution. The solution may have algebraic-type singularities at a finite number of
corner points or points of abrupt change in the type of boundary-condition. Here it
is only assumed that the pollution-error in a shrinking mesh-patch (i.e. Th(z ° , H))
in the interior of the subdomain is controlled; this implies that the mesh has
been adequately refined in the neighborhood of all singular points. If the mesh is
constructed adaptively to be nearly equilibrated in the energy norm it will satisfy
this assumption, for all practical purposes.

Theorem 3. Assume that the assumptions of Theorem 1 hold. Further assume that
for the estimators,

IC(c(zO, h), wh,,CQ) = r'(o(whCQ) > a > 0 (3.18a)1'III z, h)to~

Then

K2 (S(Z°, H), Uh, f) = X 2(C( 00 h), W, £Q)(1 + Ckh-1) (3.18b)

and

X(c(z ° , h), w,,fQ) = .(Z, ct,Q) (3.18c)

where i 2(S(W°, H2 ), uh, f) := (JC(S(gC, H2 ), Uh, f)) 2.

Remark 3.2. The proof of theorem 1 in [1] is based on various interior estimates
for the error in finite element approximations of Poisson's equation, especially the
results given in [691. It is very plausible that analogs of these results hold for
finite element approximations of the elasticity equations and more general elliptic-
systems because the main ideas of the proofs of these results carry to the general
case. To our knowledge the precise details for the elasticity equations are not
available in the open literature. Nevertheless we will assume the validity of the
analog of Theorems 1-3 for the equations of elasticity.

4 Description of the element-residual error es-
timators

Below, we will describe various versions of the element-residual estimator
which were tested in this model study. We define the estimators for the scalar
model problem; the corresponding definitions of the estimators for the elasticity
problem can be constructed analogously.

12



4.1 Unequilibrated element-residual with (p+l)-degree
bubble-space

For an interior element r we consider the following discrete local problem:

Find (+rP') E MP+'(T) such that

b?(Z(P+'), v) = J.r,(v) V v E M+'(T) (4.1)

Here M+'(T) is the bubble-space of degree (p-+ 1),

M+7(T) :--{v E P+'(T) IIP(v) = O} (4.2)

where 11P is the element interpolation-operator defined in 1141. The bubble space
can be written as the following algebraic sum:

M+'(r) = (M+l)b(7) ED 'P, 1 (T) (4.3)

Here Po+(r) >PP+() nfH (r) and

(M;+')'(7) {t E Pp+1(7) V = r (4.4a)

where e" is the i-th edge of the element r and E E ?P+l(T) such that
.0 a,.aw P< '(CT)I
~ --O =0 V w E P () := PP(E)lHo() (4.4b)

as as

The element error indicators for the unequilibrated element-residual axe given
by

O(P+I) := II19 T+0111T (4-5)

4.2 Construction of the equilibrated residuals

Let us assume that the element-residuals have been modified in the following
way:

: = T'() + f vr. (4.6)
cC8irlnE ,

Here 0 is the correction for the edge c and the element r. For any interior edge
= Or l 0T* it is assumed that 0" = -O .. We then have

13



Z Y~v) ~ .,.E(v)(4.7)
rETh, TETI%

In particular if the corrections are such that

Y'Q(I) =0 V T E T (4.8)

we can construct the element-residual problems:

Find i. E H'(T) such that

b, (i, v) - Y-(v) V v E H'(T) (4.9)

We then have

ET______ rETh ________

IIe&IIo- sup TE = sup - sup vETs (4.10a)
EHH11D WeH!D 1111 Zffri IIIVIII0

and hence

E

II1e,11o< =ujII121 (4.10b)

Thus a global upper-estimator is obtained provided that the local problems are solved
exactly. This motivated various authors [31-441 to construct equilibrated residuals.

We will now outline a recipe for the local construction of equilibrated element-
residuals; this technique was proposed in [31-33] (see also [38]-[41]). Following [11]
let 0" be a function defined on each edge e. We define (see Fig. 1)

rr. = OC ,  0". t = - 0OC (4.11)

Given any interior element r and q, 0 5 q 5 p, the aim is to determine edgewise
smooth functions Of, e E Ei,,t such that

.F-Q(v) = 0 V v E 'P9('r) (4.12)

The residual which satisfy (4.12) are said to be q-order equilibrated. Eq. (4.12) will
hold if

f . - -.. (#,) , i = 1,...,1N (4.13)

14



where Oi is the i-th shape-function of the element and Nq denotes the total number
of hierarchic shape-functions of degree q in the element r. A set of edgewise
polynomial corrections for edges in the interior of the mesh is constructed as follows:

(a). Edgewise linear corrections.

Let us first determine edgewise linear corrections in the form

e C, = =(ep 1 c + e2) (4.14)

Ot 2 0C 2
I := -(2A4 - 2), 1 := -(2A2 -) (4.15)

where A', k = 1, 2 are the linear shape-functions defined over the edge c. Note
that

a, 'k =-- 0 , k = 1,2 (4.16)

Let X denote an interior vertex of the mesh with the element r f and the edges

1 i ,... 4, connected to it, as shown in Fig. 3 and let v(c) denote the local

number (1 or 2) of the vertex X with respect to the edge c- The values of ck'x,(e x )

are obtained from the linear system
Z ~xx- '(T x), k 1,...,4 (4.17)

which reads

1 o o -1 0,uX-(cix)

-1 1 0 0 a(4 = -4 (x) (4.18)

-1 1 o Oe,.J(,) - 7 x((OX)

o 0 -1 1 x aOX i(cX) -. Y'X(Ox)

Here we assumed that the directions of edge-normals are the ones shown in Fig. 3.
The matrix has exactly one zero eigenvalue with corresponding eigenvector

[11,1, 11
T . Moreover from the orthogonality condition we have

E x 0 (4.19)

and the system is consistent. Particular solutions can be obtained by different
choices of the free-constant. For example one may choose , = 0 (e.g. [l11)
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or one may choose the constant by minimizing various norms of the solution of
(4.18), namely

4
J=_( ) W(0e.' (C ))2  (4.20)

k=1

,XIwas proposed in
In [33] it was suggested to let wok = 1 while the choice wk = wsproedn

[38-39].

b. Higher-order corrections.

Let us denote by 0,,k, k = 1,... , (q+ 1) the basis-functions which do not vanish
on the edge e. We extend the conjugate basis introduced in (4.15) as follows:

1 0, ifj <i

1, if(4.21)

where 3 < i,j < (q + 1).
After the linear edge corrections have been determined, the higher-order cor-

rections can be computed from

i-1

0G" =--t'u.,(#,i)-9( OJ O&Ai, i=3,...,(q+ 1), cr, (4.22)

Note that the higher-order corrections can be determined explicitly and are defined
uniquely for each edge.

4.3 Equilibrated element residual estimators

We will consider the following equilibrated element residual estimators:

a. Element-residual with q-order equilibration and (p+ 1)-degree bubble-space:

Find i(,P+),, E M+'(r) such that

b,.r(Z+)=',v) = ' Qf(v) V v E Mp+1 (r) (4.23)

where FfQ,q denotes the q-order equilibrated residual in the element r. The cor-
responding element error-indicators are

__ (4.24)

b. Element-residual with q-order equilibration and (p+k)-polynomial space:
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Find &+k)-9 E PP+k(T) such that

br(&+k)9,V) = FfQ'(v) V v E Pp+k(T) (4.25)

with the corresponding element error indicators

(,P := i(4.26)

Remark 4.1: By letting k -- oo we recover the exact solution i of the local
problem (4.9) with q-order equilibrated residuals. In most cases, by letting k = 3
we obtain element error indicators which are practically the same as the indicators
corresponding to the exact solutions of the local problems.

4.4 Determination of the optimal equilibrations

In the Section 4.2 we gave a recipe for the construction of q-order equilibrated
residuals which depend upon the choice of a free-constant for each vertex of the
mesh. Here we address the question of the selection of the optimal constants for the
estimator based on the exact solution of the equilibrated element-residual problem
(4.9). This is an upper estimator, as shown in (4.10). By optimal constants for
this estimator we mean the ones which minimize the upper-bound for the error in
(4.10b). In the numerical examples we determined the optimal constants in the
interior of locally-periodic meshes. We now give an example of how these constants
are determined.

Let us consider a periodic-mesh which is constructed by the periodic repetition
of the Criss-Cross pattern shown in Fig. 4d. In this pattern we distinguish two
types of vertices, namely, vertex X1 (which is connected to four elements) and
vertex X 2 (which is connected to eight elements). Let Cx,, Cx2 denote the free-
constants associated with the linear edge-corrections (e.g. eq. (4.18)) for vertex X 1 ,
X 2 , respectively. The edge-corrections for this mesh-pattern can be written as

O'(CX1 ,Cx 2) = 81(0, 0) + Cx1 (0(1, 0) - "(0, 0)) + Cx2(0e(0, 1) - '(0, 0)) (4.27)

Here we let &C = 0(CX1,CX2) to denote the dependence of the edge-corrections on
the free-constants. By superposition we also have

eTI(Cxl,Cx2) = .(0,0) + Cx1 (i.(1,0) - ,(0,0)) +Cx 2 (i,.(O, 1) - ,(0,0)) (4.28)

The error estimator in the periodic mesh-cell wok is given by

Lw = ,CX )1112 (4.29)
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The values of the constants which minimize C are obtained by solving the system:

0

K x, x, K x, X 21 J Cx 1 I X 1[Z::; :] :} I{2 (4-30a)
where

4

Kx,1 x= Zb.,.,(1,O) - iT,(0,0),i,(1,0) - &,(0,0))

4

Kx1 x2 = &b,(i,(1,0) - i, (0,0),i.,(0,1) - i, (0,0))
i=1

4
Kx2x2 = b(,(4,(O, 1) - g,.,(0,0), i,,(0, 1) - i,(0,0)) (4.30b)

4

Fx1 = - 0 b,( ,(1, 0) - i,,(0, 0), 4 ,(0, 0))

4
Fx2 = - (,,, -(0 , 1 (0, 0), i,,(0, 0))

By employing these constants we get the optimal estimator based on exact
solutions of the equilibrated element residual problems.

4.5 Another method of constructing the equilibrated resid-
uals

In [20], [24] and [44] a method for constructing 0-th order equilibrated residuals
was given. This method, which obtains the equilibrated residuals by splitting the
jumps linearly on each edge, is outlined below for edges in the interior of the mesh:

The aim is to find functions P, E ''(e), C E Ein, such that for every r in the
interior of the mesh Th

b.(uh, 1) = e f+ 1+(q(uhJ .))-n,

(4.31)
+ 'U-,J

eCOr,
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Here I, is defined by using the convention is = -P = pC.

We let

p' = jz,,41 + P ,2A (4.32)

Then eq. (4.31) can be written as

f E, ( 4iA ) = -Y,(1) (4.33)
fC -, t,"=

Eq. (4.33) will be satisfied if for each vertex X we obtain the values of p='kx$() by
solving the linear system:

gJA.,(cx) j, .;xJ~ x _ p'x_,''(_,) 4 O4xJCx = _.Fr.x(X), k = 1,... ,Nx

(4.35)
Here we employ the same notation as in Section 4.2. Nx denotes the number of
elements connected to vertex X and we define ec := 4-* By letting

f'""(C1) := "")* 1 kxJ (4.36)

we see that the A-unknowns satisfy the same linear system as the 9-unknowns in
Section 4.18. For the details related to the computation of the p-unknowns see[44].

The 0th-order equilibrated residuals are given by

PQM := .Y(v) + E ; &'J' (4.37)

5 Assessment of the quality of the element resid-
ual estimator

In this Section we analyze the quality of the element residual estimators,
given in the previous Section, for the periodic mesh-patterns shown in Figs. 4a-d.
According to Theorem 3, we can compute the asymptotic value of the effectivity
index for a mesh-cell in the interior of a periodic mesh-patch from the master-cell,
namely

ti!! i(S(z°,HI),uh,f) = x(2, tb,,CQ) (5.1)

where Q is the (p+ 1)-degree Taylor-series expansion of the exact solution u about
zO and H, = Ch", 0< oo <1 (see Section 3 and [1]). Hence, for a given Q, the
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effectivity index of the estimator can be obtained using the solution of the periodic
boundary-value problem (3.7) over the master-cell Z. Given a class of solutions
U, let Q denote the class of all Taylor-series expansions of functions from U (Q is
a finite-dimensional space of monomials). For a given mesh-pattern and class of
solutions U, we can determine the asymptotic quality of an estimator by computing
the asymptotic bounds for the effectivity index

CU = max c (Z, t', £Q), CL = max c(, @,,£Q) (5.2)
QeQ QEQ

The values of CL, CU can be computed using numerical optimization. In the numer-
ical study below we considered only "harmonic" solutions (by "harmonic" solution
we mean solution of the homogeneous differential equation or system; when the
solution satisfies Laplace's equation it is truly harmonic).

Below we analyzed the robustness of the following element-residual (ER) esti-
mators:

1. Unequilibrated ER (Est. ER-B) (Eqs. (4.1)-(4.5));

2. ER with q-order equilibration and (p+l)-degree bubble-space (Est. ERqB)
(Eqs. (4.23)-(4.24))

S. ER with q-order equilibration and (p+k)-degree polynomial-space (Est.
ERqPp+k) (Eqs. (4.25)-(4.26))

4. ER with Oth-order equilibration and (p + k)-degree polynomial space (Est.
EROPp + k) (Eqs. (4.25)-(4.26) where F-fQ, from eq. (4.37) is employed
instead of EQ,q in (4.25)).

The quality of the estimators will be assessed by studying the range of the
effectivity-index as a function of the aspect-ratio and the material-orthotropy for
the four mesh-patterns of Fig. 4. Based on previous numerical studies [1, 2] we can
conjecture that if an estimator is robust with respect to variations of the aspect-
ratio and material-orthotropy for these patterns it is also robust for the cases which
are encountered in practical computations.

We now present the numerical results.

5.1 Unequilibrated element residual: Sensitivity to the
variation of the aspect-ratio

For the estimator ER-B we computed the range of the effectivity index, for
the four mesh-patterns and elements of degree p (2 < p _< 6), for the aspect-ratios

11~11 11 11The results are given in Table la-id. We observe that:1' 2' 4' 8' 16"

(1) For the Regular pattern the estimator is practically exact for all degrees p.
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(2) For the Chevron and the Union-Jack pattern ER-B is an upper estimator
and its robustness deteriorates with the aspect-ratio. The worst robustness

1is obtained for p - 2 and aspect-ratio -,for both the Chevron and the

Union-Jack patterns, with robustness index 1Z = 5.61.

(3) For the Criss-Cross pattern ER-B is a lower estimator for aspect-ratio other
1

than - . The worst robustness for this pattern is obtained for p = 2 and
1

aspect-ratio I with robustness index 1 = 3.47.
16

5.2 The element residual estimator with q-order equili-
bration and (p+1)-degree bubble-space: Sensitivity
to the variation of the aspect-ratio

In Tables 2a-2d (resp. 3a-3d) we report the range of the estimator ERIB
(resp. ERpB), for the mesh-patterns and elements of degree p, as a function of the
aspect-ratio. In Tables 4a-4c we report the same results for the estimator ERp-1B
for the Chevron, Union-Jack and Criss-Cross patterns, and in Tables 5a-5b we give
results for the estimator ERp-2B for the Union-Jack and Criss-Cross patterns. We
observe the following:

(1) Equilibration of order (p - 1) dramatically improves the robustness of the
estimators which employ the (p + 1)-degree bubble-space. For the Regular,
Chevron and Union-Jack patterns the robustness-index is less than 0.25. For
the Criss-Cross pattern the robustness index is less than 0.70.

(2) Comparing Tables 3 and 4 we see that the estimators ERpB and ER(p-1)B
give identical results. This can be explained by observing that the p-order
corrections along the edges are orthogonal (in the L-inner-product) to the
edge-restrictions of the (p + 1)-degree bubble functions.

(3) Similarly, the edge-corrections of degree q _< (p - 2) are orthogonal to the
edge-restrictions of the (p-+ 1)-degree bubble-funtions. Hence the robustness
of the estimators ERqB with q p - 2, for elements of degree p _ 3, is
exactly the same with the robustness of ER-B.

5.3 The element residual estimator ERqPp+l: Sensitiv-
ity to the variation of the aspect-ratio

We studied the sensitivity of the range of the effectivity index for the estimator
ERqPp+I with respect to variations of the aspect-ratio. In Tables 6a-6d we report
the range of the effectivity index for the estimators ERpPp+1 for the four mesh-
patterns. In Table 7 we give the results for the estimator ERp-lPp+1 for the
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Union-Jack and the Criss-Cross pattern and quartic elements (p = 4). From the
results we observe that:

(1) The estimator ERpPp+ 1 shows reasonable robustness for all the four mesh-
patterns. In the results given in Tables 6a-6d the robustness-index for the
estimator does not exceed the value 1.50.

(2) The estimator ERqPp+1 with q < p is not robust. For example the estimator
ERp-lPp+I for quartic elements in the Criss-Cross pattern has robustness
index greater than 14. Greater values of the robustness-index would be ob-
tained if equilibrations of lower-order (i.e. q < p - 1) are employed.

5.4 The element residual estimators ERqB and ERqPp+1:
Sensitivity to the material-orthotropy

As discussed in ill and [2], the main-factor which affects the quality of error
estimators is the geometry of the mesh. The geometry has to be understood in
terms of the values of the coefficients of the differential operator. (For example, let
us consider the problem of heat-conduction in a highly orthotropic medium with
the principal directions of the material oblique to the mesh. Then, the geometry
of the mesh which affects the quality of the estimators can be determined by
transforming the geometrical variables so that Laplace operator is obtained in the
transformed coordinates (see also [1] for further details).)

To study the robustness of the estimators for orthotropic heat-conduction we
considered the class of materials with principal values of orthotropy 1 _5 K,. ,, <_
K... _ 1000 and orientation 0 of one of the principal axes of orthotropy with the
fixed coordinate direction; (0 will be called the grid-material orientation). Here
we varied 0, between 0* and 900, at increments of 50 and for each grid-material
orientation we determined the principal values of orthotropy and the "harmonic"
polynomials which correspond to the extrema of the effectivity index. It should be
noted that 0 corresponds either to the first or the second principal axis depending
on the outcome of the optimization. In Table 8 we give the results for cubic
elements and all the four mesh-patterns. In Table 8a (resp. Table 8b) we give the
sensitivity of the estimator ERiB (resp. ERqB) while in Table 8c (resp. Table 8d)
we give the sensitivity of the estimator ER1Pp+1 (resp. ERpPp+l). We observe
the following:

(1) The estimator ERpB is the most robust one; for the cases shown in Table 8b
the robustness index is less than one.

(2) The estimators ER1Pp+I and ERpPp+1 are not robust. The robustness
index for ER1Pp+1 in Table 8c exceeds 33. By employing p-order order
equilibration the robustness is improved somewhat but the value of the ro-
bustness index still exceeds 20.
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5.5 The estimator ERpPp+oo: The robustness of the op-
timal version of the estimator

Often in practical applications a conservative estimate of the error is preferred.
This has motivated the use of estimators based on the complementary energy-
principle. Such estimators can be employed to construct a global upper-bound
of the error in the entire mesh or an upper-bound of the error in the periodic
mesh-cell. Here we will examine the robustness of the optimal version of the
element-residual estimator based on the complementary energy-principle, namely
the estimator ERpPp+oo with the optimal equilibration described in Section 4.4.
We considered the problem of orthotropic heat-conduction given in Section 5.4 and
computed the upper-bound of the estimator ERpPp+2 for the equilibration on the
recipe given in [38-39] and the recipe which employs the optimal constants given in
Section 4.4. In Table 9 we give the results for the Regular and Criss-Cross pattern
with cubic elements. We did not report the lower-bound for the effectivity index
which is equal to one in both cases. We computed the estimator by employing only
two degrees higher than the order of the element (except in some cases) because we
observed that the value of the estimator did not change, for all practical purposes,
with a further increase of the order of the local approximation. We observe that:

(1) The robustness of the estimator based on the recipe given in [38-39] is prac-
tically the same with the robustness of the estimator based on the optimal
constants.

'2) In both cases the robustness is rather poor and the robustness-index exceeds
20.

5.6 The robustness of the estimator EROPp+k: Sensitiv-
ity to the variation of the aspect-ratio

Here we studied the robustness of the estimator EROPp+3 for the Laplace
equation by computing the sensitivity of the estimator to the variation of the
aspect-ratio for the Criss-Cross pattern and cubic elements (p = 3). In Table 10
we report the range of the effectivity index. We observe that:

(1) This is an upper estimator.

(2) This estimator EROPp+3 is not robust. For aspect-ratio the robustness

index exceeds 17. i-
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5.7 The robustness of the estimators ERqB, ERqPp + k
for the isotropic elasticity problem: Sensitivity to the
variation of the aspect-ratio

Here we studied the robustness of the estimators ER1B, ERpB, ERIPp+3,
ERpPp+3 for the elasticity problem by computing their sensitivity to the variation
of the aspect-ratio. In Tables lla-lid (resp. Tables 12a-12d) we give the values of
CL, CU for the estimator ER1B (resp. ERpB), for p = 2, 3, 4. In Table 13a (resp.
Table 13b) we give the values of CL, CU for ER1Pp+3 (resp. ERpPp+3) for p = 3.
All the results given here were obtained for Poisson's ratio equal to 0.3; (from the
results given in [1-21 we expect a small variation of the robustness with the value
of Poisson's ratio). We observe that:

(1) We can draw the same conclusions about the estimators as in the case of
isotropic heat-conduction.

(2) The estimator ERpB is the most robust and its robustness-index does not
exceed 1.

(3) The error estimatLr ERpPp+3 (which is practically the estimator based on
the complementary energy-principle) shows poor robustness and its robustness-
index exceeds 40.

(4) The error estimator ER1Pp+3 in the case of the Criss-Cross pattern with
1aspect-ratio 1 has a robustness-index exceeding 60

5.8 The estimator ERpPp + oo for the elasticity problem:
The robustness of the optimal version of the estimator

As in Section 5.5 we studied the robustness of the optimal version of the
estimator ERpPp+oo for the elasticity problem. Here we studied the robustness
with respect to variations of the aspect-ratio. In Table 14 we give the values of CL,
Cu for the optimal version estimator ERpPp+3 (which is practically the same as
ERpPp+oo) for the four mesh-patterns and cubic elements. We observe that:

(1) By comparing the results of Tables 14 and 13b we see that the optimal version
of the estimator is substantially more robust than the version based on the
recipe given in [38-391.

(2) The robustness of the optimal version of the estimator ERpPp+oo is poor.
The robustness-index for this estimator for the Criss-Cross pattern with as-

pect ratio I exceeds 20.
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5.9 The estimators ER-B, ERIB, ERpB for meshes of
square-elements with local refinements: Sensitivity to
the material-orthotropy for the three element types

We also studied the robustness of the estimators ER-B, ER1B and ERpB for
meshes of square-elements with local refinements. Here we are interested in the
robustness of the estimators for the three element-types, namely the tensor-product
(eq. (2.11)), Serendipity (eq. (2.12)) and intermediate (eq. (2.13)) elements.

We now briefly describe the construction of the edgewise polynomial corrections
for meshes of square elements with refinements. Let us consider the mesh-patch
associated with vertex X as shown in Fig. 5. The element rx (i = 1, 2,..., 6) and
the edges Jx (j = 1, 2,..., 8) are also shown in Fig. 5. Here an edge is defined
as the intersection of the boundary of two elements therefore a side of a square
element may consist of two edges.

We first define the linear corrections of the form

(oC',I, + r.2 DI), Aj = j i, j = 1,2

Here Aj are the linear shape functions corresponding to the two end nodes of the
edge. If the edge E does not have any irregular end-points then O -k, where 0!
is given in eq. (4.15). If one of the end-points of the edge is an irregular node, as
shown in Fig. 5b, we have:

-= 1 1 2 7
1 =,,(4A, - 8A2), .0 = -(--'\I+ _A2)

for the edge el which has its right-end-point at the irregular node (see Fig. 5b);

17 A 2  1

-\2 C22 =-(-8A 1 +4A 2)

for the edge C2 which has its left-end-point at the irregular node (see Fig. 5b).
Here A,, A2 are the linear shape-functions corresponding to the end-points of the
segment Z, U Z2, as shown in Fig. 5b. Following the similar steps given in Section
4.2, we get the following system of equations:
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-1 1 1 0 0 0 0 0" 0"'.(c ( -.F, (4'x)

o -i o 1 o o -l 1 o -,)-,(x
o 0 -1 0 0 0 1 0 1X"(',-(

x x)

o010-1 O"S ,es

o o 0 -1 -1 1 0 0 0 (4)- (ox)

1 0 0 0 0 -1 0 0 0q"'(C') -. F, (Ox

oe4 ,,,(e )

1

We solve for 0',,J4c&) by minimizing the expansion in (4.20) with Wk =

We now outline the steps involved to compute higher-order corrections. In order
to determine the higher-order corrections, we define the conjugate basis {Ji ) over
each edge as

I 1 0, if j< i

C 1, ~if i

where 0,,, i = 3,..., (q + 1) denote the basis functions which do not vanish on
edge c. We obtain the higher-order corrections Ofj , j = 3,..., (q + 1) using

i-1

o,'i 0-"J.(,) - E 0' J C,(bi,, C o Tt

Note that the integrals on the right-hand side can be computed explicitly on the
master element i = [-1,1], therefore the cost of computing the higher order terms
er,', i = 3,..., (q + 1) is negligible.

We studied the robustness of the estimators for solutions of the equation of
orthotropic heat-conduction, for the general class of solutions, in the mesh-cells
shown in Figs. 6a and 6b. We computed the range of the effectivity index as a

function of the grid-material orientation for orthotropy = 100. In Tables
K l-in

15 and 16 we give the results for the three element types, for the mesh-cell at the
mesh-interface (shown in Fig. 6a), for cubic and quartic elements, respectively. In
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Table 17a (resp. Table 17b) we give the results for tensor-product (resp. Serendip-
ity) elements of degree 5, for the mesh-cell at the mesh-interface. In Tables 18a
(resp. Table 18b) we give the results for the periodic rresh-cell with two-levels of
refinements shown in Fig. 6b for tensor-product (resp. Serendipity) elements of
degree 3. We observe the following:

(1) The estimators ER-B and ERi B have practically the same range of effectivity
index for the three element-types. Hence linear equilibration is not effective
for elements of degree p > 3.

(2) The estimator ERpB is very robust; for the cases shown in Tables 15-18, its
robustness-index does not exceed 0.4.

(3) The largest values of the robustness-index (for a given element-degree p) for
all the estimators are observed to be the largest for the serendipity elements.
The robustness of the estimators for the tensor-product and intermediate
element-types is practically the same.

5.10 Analysis of the effect of the order of equilibration on
the value of the effectivity index

In order to analyze further the effect of higher-order equilibration on the value
of the effectivity index we noted that

4 4

E f14 - ehIlI' E b,(, - eh, e)
K 

2 (c(zh), uh, f) 1 + i=1 4+2 41 (5.3)

i--1i=1

and computed the value of the second- and the third-term on the right-hand side
of (5.3) for ER1B, ERpB, ER1Pp+3, ERpPp+3. In Table 19 we give the values

I
for the Criss-Cross pattern with aspect-ratio 4. We solved Laplace's equation with

4
quartic elements to approximate the harmonic monomials Q1 (Xz, X2) = Re((XI +
iX2 )I), Q 2(X1,X2) = Jm((Xl + iX2)'). We observe the following

(1) The robust versions of the estimators are obtained because the higher-order
equilibration causes cancellation between the second and the third-term in the
expansion (5.3).

4

(2) The term 41 is the value of the relative error in the error-
E 1l1ehIll,

indicator functions in the mesh-pattern. Note that even with p-order equili-
bration this relative error is more than 100% for all the cases listed in Table
19.
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5.11 The equilibrated patch-residual error estimator: Ro-
bustness of the various versions of the estimator

In order to construct residual estimator which are more robust than the
element-residual estimator described and analyzed above. Let us assume that we
are interested to estimate the error in the mesh-cell T(z ° , h). Then we consider
the following patch-residual problem over the mesh-cell T(z ° , 2h):

Find i E S,+k(T(xO, 2h)) such that

= ( ,v) = Z4 (v) V v E Sr+k(T(zO,2h)) (5.4)
iET(x0 ,2h)

Here Sr+k(T(x ° , 2h)) denotes the elementwise (p+ k)-degree polynomial space over
the mesh-cell T(z ° , 2h) . The error estimator in the mesh-cell T(c ° , h) is given by:

r(w.h) := , II1ll (5.5)
rc-T(xh)

As an example we considered T(z ° , h) to be the mesh-cell for the Criss-Cross
pattern shown in Fig. 4d. We solved the problem of orthotropic heat-conduction
(with 1 < Ki < K,,. < 1000 as described above) with cubic elements. We
computed the error-indicator function (5.4) by letting k = 1 and by employing
linear and p-order equilibration. From the results, which are are given in Table 20,
we observe the following:

(1) The patch-residual estimators are much more robust than the corresponding
versions of the element-residual estimators. For example when p-order equi-
libration is employed the robustness-index for ERpPp+1 for cubic elements
in the Criss-Cross pattern is greater than 10 while the robustness-index for
the corresponding patch-residual estimator does not exceed 0.5.

(2) The patch-residual estimator with p-order equilibration is more robust than
the corresponding estimator with linear equilibration. For example in Table
20 the robustness-index of the patch-residual estimator with linear equilibra-
tion is greater than 2.

6 Conclusions

We presented a model study of the element-residual estimators in the interior of
patchwise uniform meshes. The results of this study are indicative of the expected
performance of these estimators in the interior of general grids. From the results
presented the following conclusions can be drawn:
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(1) Higher-order equilibration substantially improves the robustness of the element-
residual estimators.

(2) The estimator based on the complementary energy-principle is not robust
(even in its optimal version) with respect to variations of the aspect-ratio or
the material-orthotropy.

(3) The estimator ERpB which employs p-order equilibration and (p + 1)-degree
bubble-type approximation of the solution of the local problem is the most
robust.

(4) The robustness of the element residual estimators can be further improved
by constructing patch-residual estimators by assembling the element-residual
problems in a patch. By employing p-order equilibration to set the boundary-
conditions for the patch-residual problem we can obtain very robust estimator
even in the cases of extreme material-orthotropy.
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Unequilibrated ER with (p+l)-degree bubble-space

Regular Pattern

Aspect p = 2 p = 3 p 4 p = 5 p 6

Ratio CL CU CL CU CL CU CL CU CL CU

1
1.000 1.000 0.948 1.000 0.985 0.986 0.984 0.999 0.995 0.996

11 1.000 1.000 0.972 1.000 0.994 0.995 0.986 1.000 0.992 0.999

11 1.000 1.000 0.992 1.000 0.999 0.999 0.995 1.000 0.998 1.000

1
1 1.000 1.000 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000

1
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table la. Unequilibrated ER with (p + 1)-degree bubble-space: Laplace's equa-
tion. Range of the effectivity index as a function of the aspect-ratio for the Regular
pattern.
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Unequilibrated ER with (p+l)-degree bubble-space

Chevron Pattern

Aspect P= 2  P= 3  p=4 p=5 p=6

Ratio CL CU i ,  CU CL CU CL CU CL CU
1
- 1.000 1.049 0.948 1.017 0.986 0.995 0.984 1.003 0.995 0.997
1

1 1.000 1.922 0.992 1.568 0.999 1.414 0.995 1.316 0.998 1.259
4

1 1.000 3.423 0.998 2.551 1.000 2.116 0.999 1.854 1.000 1.692

1
i- 1.000 6.612 1.000 4.746 1.000 3.755 1.000 3.143 1.000 2.737

Table lb. Unequilibrated ER with (p + 1)-degree bubble-space: Laplace's equa-
tion. Range of the effectivity index as a function of the aspect-ratio for the Chevron
pattern.
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Unequilibrated ER with (p+l)-degree bubble-space

Union-Jack Pattern

Aspect p= 2  p=3 p=4 p=5 p=6

Ratio CL Cu CL Cu CL CU CL CU CL CU

1
- 1.049 1.049 0.948 1.033 0.995 0.995 0.984 1.007 0.997 0.997
1

- 1.003 1.281 0.972 1.160 0.994 1.112 0.986 1.080 0.992 1.059
2

11 1.001 1.922 0.992 1.568 0.999 1.414 0.995 1.316 0.998 1.259
4

11 1.000 3.423 0.998 2.551 1.000 2.116 0.999 1.854 1.000 1.692

1
16 1.000 6.612 1.000 4.746 1.000 3.755 1.000 3.143 1.000 2.737

Table 1c. Unequilibrated ER with (p + 1)-degree bubble-space: Laplace's equa-
tion. Range of the effectivity index as a function of the aspect-ratio for the Union-
Jack pattern.
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Unequilibrated ER with (p+l)-degree bubble-space

Criss-Cross Pattern

Aspect p = 2 p = 3 p = 4 p = 5 p = 6

Ratio CL c CL CU CL .CU CL CU CL CU

1 1.049 1.049 0.948 1.033 0.995 0.995 0.984 1.007 0.997 0.997

1
1 0.891 0.959 0.894 0.930 0.897 0.944 0.899 0.950 0.938 0.9,'7

1
1 0.570 0.906 0.702 0.841 0.692 0.848 0.707 0.869 0.757 0.894
4
1 0.339 0.894 0.512 0.816 0.469 0.812 0.549 0.829 0.536 0.855

1 J.230 0.891 046 0.810 0.323 0.803 0.493 0.818 0.377 0.841

Table Id. Unequilibrated ER with (p + 1)-degree bubble-space: Laplace's equa-
tion. Range of the effectivity index as a function of the aspect-ratio for the Criss-
Cross pattern.
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ER with linear equilibration and (p+1)-degree bubble-space

Regular Pattern

Aspect p= 2  p= 3  p=4 p=5 p=6

Ratio CL CU CL CU CL CU ICL CU CL CU

1 - 1.000 1.000 0.948 1.000 0.985 0.985 0.984 0.999 0.996 0.996

1 1.000 1.000 0.972 1.000 0.994 0.995 0.986 1.000 0.992 0.999

1
1.000 1.000 0.992 1.000 0.999 0.999 0.995 1.000 0.998 1.000

1
1 1.000 1.000 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000

1
1 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2a. ER with linear equilibration and (p+ 1)-degree bubble-space: Laplace's
equation Range of the effectivity index as a function of the aspect-ratio for the
Regular pattern.
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ER with linear equilibration and (p+1)-degree bubble-space

Chevron Pattern

Aspect p=2 P= 3  p= 4  P=5 p=6
Ratio CL CU CL CU CL CU CL CU CL CU

1
- 1.000 1.008 0.948 1.017 0.986 0.995 0.984 1.003 0.995 0.997
1

1 1.000 1.004 0.992 1.568 0.999 1.414 0.995 1.316 0.998 1.259
4

1 1.000 1.001 0.998 2.551 1.000 2.116 0.999 1.854 1.000 1.692
8

1
i- 1.000 1.000 1.000 4.746 1.000 3.755 1.000 3.143 1.000 2.737

Table 2b. ER with linear equilibration and (p+ 1)-degree bubble-space: Laplace's
equation. Range of the effectivity index as a function of the aspect-ratio for the
Chevron pattern.
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ER with linear equilibration and (p+l)-degree bubble-space

Union-Jack Pattern

Aspect p=2 p=3 p-4 P=5 p=6

Ratio CL CU CL CU CL CU CL CU CL CU

11 1.000 1.000 0.948 1.033 0.995 0.995 0.984 1.007 0.997 0.997

1

1.000 1.000 0.972 1.160 0.994 1.112 0.986 1.080 0.992 1.059

1
1 1.000 1.000 0.992 1.568 0.999 1.414 0.995 1.316 0.998 1.259

1
1.000 1.000 0.998 2.551 1.000 2.116 0.999 1.854 1.000 1.692

1
1 1.000 1.000 1.000 4.746 1.000 3.755 1.000 3.143 1.000 2.737

Table 2c. ER with linear equilibration and (p+ 1)-degree bubble-space: Laplace's
equation. Range of the effectivity index as a function of the aspect-ratio for the
Union-Jack pattern.
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ER with linear equilibrationn and (p+1)-degree bubble-space

Criss-Cross Pattern

Aspect p=2 p=3 p=4 p=5 p-6
Ratio CL cU ?F cL CU cL CU CU CF CU

1 1.000 1.000 0.948 1.033 0.995 0.995 0.984 1.007 0.997 0.997
1

1 0.922 0.977 0.894 0.930 0.897 0.944 0.899 0.950 0.938 0.9582

1 0.796 0.985 0.702 0.841 0.692 0.848 0.707 0.869 0.757 0.894
4

1
- 0.733 0.995 0.512 0.816 0.469 0.812 0.549 0.829 0.536 0.855

16

Table 2d. ER with linear equilibration and (p+ 1)-degree bubble-space: Laplace's
equation. Range of the effectivity index as a function of the aspect-ratio for the
Criss-Cross pattern.
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ER with p-order equilibration and (p+l)-degree bubble-space

Regular Pattern

Aspect p=2 p=3 p-4 p=5 p=6
Ratio cL CU CL CU CL CU CL CU CL CU

11 1.000 1.000 0.948 1.000 0.985 0.985 0.984 0.999 0.996 0.996

1
1 1.000 1.000 0.972 1.000 0.994 0.995 0.986 1.000 0.992 0.999

- 1.000 1.000 0.992 1.000 0.999 0.999 0.995 1.000 0.998 1.000

11 1.000 1.000 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000

1
1 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3a. ER with p-order equilibration and (p+ 1)-degree bubble-space: Laplace's
equation Range of the effectivity index as a function of the aspect-ratio for the Reg-
ular pattern.
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ER with p-order equilibration and (p+l)-degree bubble-space

Chevron Pattern

Aspect p-2 p=3 p=4 p=5 p-6
Ratio CL CU C U CL 'C" CL CU CL CU

11 1.000 1.008 0.948 1.000 0.986 1.109 0.984 0.998 0.995 1.027
1

1
1 1.000 1.009 0.972 1.000 0.994 1.208 0.986 1.000 0.992 1.269
2

1
1 1.000 1.004 0.992 1.000 0.999 1.093 0.995 1.000 0.998 1.241
4

1 - 1.000 1.001 0.998 1.000 1.000 1.025 0.999 1.000 1.000 1.071

- 1.000 1.000 1.000 1.000 1.000 1.006 1.000 1.000 1.000 1.017

Table 3b. ER with p-order equilibration and (p+l)-degree bubble-space: Laplace's
equation. Range of the effectivity index as a function of the aspect-ratio for the
Chevron pattern.
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ER with p-order equilibration and (p+1)-degree bubble-space

Union-Jack Pattern

Aspect p= 2  p= 3  p=4 p= 5  p=6

Ratio 7CL CU CL - CL CU CL Cu CL Cu

1 1.000 1.000 0.948 1.319 0.986 0.986 0.984 0.999 0.995 0.995

1 1.000 1.000 0.972 1.179 0.994 0.995 0.986 1.385 0.992 0.999

11 1.000 1.000 0.992 1.048 0.999 0.999 0.995 1.196 0.998 1.000
4
1 1.000 1.000 0.998 1.011 1.000 1.000 0.999 1.049 1.000 1.000

1
ii 1.000 1.000 1.000 1.003 1.000 1.000 1.000 1.011 1.000 1.000

Table 3c. ER with p-order equilibration and (p+ 1)-degree bubble-space: Laplace's
equation. Range of the effectivity index as a function of the aspect-ratio for the
Union-Jack pattern.
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ER with p-order equilibration and (p+l)-degree bubble-space

Criss-Cross Pattern

Aspect p=2 p=3 p-4 p=5 p=6
Ratio CL CU CL CU CL -C C, CU CL CU

1
1 1.000 1.000 0.948 1.319 0.986 0.986 0.984 0.999 0.995 0.995

- 0.922 0.977 0.902 1.132 0.937 0.941 0.916 1.157 0.961 0.964
2
1
- 0.796 0.985 0.801 0.903 0.825 0.843 0.757 1.000 0.835 0.897

1
- 0.733 0.995 0.741 0.822 0.748 0.811 0.667 0.878 0.711 0.855

1
0.714 0.999 0.717 0.806 0.719 0.805 0.682 0.842 0.694 0.841

Table 3d. ER with p-order equilibration and (p+ 1)-degree bubble-space: Laplace's
equation. Range of the effectivity index as a function of the aspect-ratio for the
Criss-Cross pattern.
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ER with (p-1)-order equilibration and (p+l)-degree bubble-space

Chevron Pattern

Aspect p = 2  p = 3 p = 4 p 5 p = 6

Ratio CL CU CL CU CL  CU CL CU L cU

1
1 1.000 1.008 0.948 1.000 0.986 1.109 0.984 0.998 0.995 1.027

1 1.000 1.009 0.972 1.000 0.994 1.208 0.986 1.000 0.992 1.269

1 - 1.000 1.004 0.992 1.000 0.999 1.093 0.995 1.000 0.998 1.241

1 1.000 1.001 0.998 1.000 1.000 1.025 0.999 1.000 1.000 1.071

1
1 1.000 1.000 1.000 1.000 1.000 1.006 1.000 1.000 1.000 1.017

Table 4a. ER with (p - 1)-order equilibration and (p + 1)-degree bubble-space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Chevron pattern.
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ER with (p-1)-order equilibration and (p+l)-degree bubble-space

Union-Jack Pattern

Aspect p=2 p=3 p= 4  P=5 p=6

Ratio CL CU CL CU CL CU CL CU CL CU

1.000 1.000 0.948 1.319 0.986 0.986 0.984 0.999 0.995 0.995

1
1.000 1.000 0.972 1.179 0.994 0.995 0.986 1.385 0.992 0.999

1
1.000 1.000 0.992 1.048 0.999 0.999 0.995 1.196 0.998 1.000

1
1.000 1.000 0.998 1.011 1.000 1.000 0.999 1.049 1.000 1.000

1
1.000 1.000 1.000 1.003 1.000 1.000 1.000 1.011 1.000 1.000

Table 4b. ER with (p - 1)-order equilibration and (p + 1)-degree bubble-space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Union-Jack pattern.
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ER with (p-1)-order equilibration and (p+l)-degree bubble-space

Criss-Cross Pattern

Aspect p = 2  p = 3  p = 4  p 5 P 6

Ratio CL CU CL CU CL CU CL CU CL CU

1 1.000 1.000 0.948 1.319 0.986 0.986 0.984 0.999 0.995 0.995

1 0.922 0.977 0.902 1.132 0.937 0.941 0.916 1.157 0.961 0.964

1
0.796 0.985 0.801 0.903 0.825 0.843 0.757 1.000 0.835 0.897

1
1 0.733 0.995 0.741 0.822 0.748 0.811 0.667 0.878 0.711 0.855

1 0.714 0.999 0.717 0.806 0.719 0.805 0.682 0.842 0.694 0.841

Table 4c. ER with (p - l)-order equilibration and (p + l)-degree bubble-space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Criss-Cross pattern.
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ER with (p-2)-order equilibration
and (p+1)-degree bubble-space

Union-Jack Pattern

Aspect p = 3  p-= 4 p = 5 p 6

Ratio Ct Cu CL Cy CL Cu CL CU

11- 0.948 1.033 0.995 0.995 0.984 1.007 0.997 0.997

0.972 1.160 0.994 1.112 0.986 1.080 0.992 1.059

1
0.992 1.568 0.999 1.414 0.995 1.316 0.998 1.259

11 0.998 2.551 1.000 2.116 0.999 1.854 1.000 1.692

1
T 1.000 4.746 1.000 3.755 1.000 3.143 1.000 2.737

Table 5a. ER with (p - 2)-order equilibration and (p + 1)-degree bubble-space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Union-Jack pattern.
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ER with (p-2)-order equilibration
and (p+l)-degree bubble-space

Criss-Cross Pattern

Aspect p 3 p 4  p 5 p 6
Ratio CL CU CL CU CLn CU CL CU

1
- 0.948 1.033 0.995 0.995 0.984 1.007 0.997 0.997
1

1 0.894 0.930 0.897 0.944 0.899 0.950 0.938 0.958
2

1 0.702 0.841 0.692 0.848 0.707 0.869 0.757 0.894
4

1
- 0.512 0.816 0.469 0.812 0.549 0.829 0.536 0.855

1 - 0.406 0.810 0.323 0.803 0.493 0.818 0.377 0.841

Table 5b. ER with (p - 2)-order equilibrat'on and (p + 1)-degree bubble-space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Criss-Cross pattern.
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ER with p-order equilibration and
(p+l)-degree polynomial space

Regular Pattern

Aspect p= 2 p= 3 pP= 4 p 5 p 6
Ratio CL CU CL CU CL CU CL CU CL CU

1 ]- 1.281 1.541 1.000 1.412 1.047 1.269 1.047 1.155 1.012 1.123

1 1.339 1.487 1.089 1.408 1.045 1.373 1.003 1.325 1.005 1.269

1
1.339 1.508 1.265 1.398 1.192 1.392 1.124 1.385 1.086 1.378

1 1.306 1.558 1.319 1.463 1.325 1.398 1.282 1.379 1.236 1.382

16 - 1.295 1.575 1.323 1.509 1.342 1.461 1.351 1.419 1.350 1.389

Table 6a. ER with p-order equilibration and (p + 1)-degree polynomial space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Regular pattern.
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ER with p-order equilibration and
(p+l)-degree polynomial space

Chevron Pattern

Aspect p = 2  p = 3  p = 4 p = 5 p = 6
Ratio CL CU CL CU CL CU CL CU CL CU

1 - 1.409 1.417 1.000 1.412 1.163 1.246 1.047 1.155 1.069 1.092

1 1.407 1.419 1.179 1.334 1.091 1.417 1.008 1.321 1.011 1.419

1
1.342 1.508 1.299 1.365 1.291 1.342 1.243 1.279 1.196 1.402

1
1.306 1.559 1.321 1.462 1.338 1.405 1.337 1.325 1.333 1.334

1
1.295 1.575 1.323 1.509 1.342 1.468 1.352 1.418 1.360 1.396

Table 6b. ER with p-order equilibration and (p + 1)-degree polynomial space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Chevron pattern.
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ER with p-order equilibration and
(p+l)-degree polynomial space

Union-Jack Pattern

Aspect p = 2 p= 3 p= 4 p = 5  p = 6
Ratio CL - C C C- CL C CL Cu U

1
1.417 1.417 1.000 1.547 1.163 1.163 1.047 1.155 1.069 1.069

1.407 1.423 1.179 1.405 1.091 1.337 1.008 1.545 1.011 1.264

1
1.342 1.507 1.299 1.391 1.291 1.301 1.243 1.382 1.196 1.284

1
1.306 1.558 1.321 1.472 1.338 1.385 1.337 1.359 1.287 1.334

1 - 1.295 1.575 1.323 1.512 1.342 1.461 1.352 1.429 1.359 1.379

Table 6c. ER with p-order equilibration and (p + 1)-degree polynomial space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Union-Jack pattern.
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ER with p-order equilibration and
(p+ 1)-degree polynomial space

Criss-Cross Pattern

Aspect p= 2  p=3 p=4 p=5 p=6
Ratio CL CU CL CU CL CU CL Cu CL CU

11 1.417 1.417 1.000 1.547 1.163 1.163 1.047 1.155 1.069 1.069
1

1.271 1.724 1.401 1.451 1.256 1.338 1.169 1.369 1.175 1.182

1 1.235 1.958 1.242 1.881 1.166 1.839 1.253 1.556 1.138 1.569

1
1.227 2.047 1.186 2.158 1.129 2.200 1.160 1.977 1.099 2.014

1
1.225 2.073 1.173 2.265 1.121 2.352 1.133 2.299 1.085 2.342

Table 6d. ER with p-order equilibration and (p + 1)-degree polynomial space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Criss-Cross pattern.
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ER with (p-1)-order equilibration and
(p+1)-degree polynomial space

Quartic elements

Aspect Union-Jack Criss-Cross
Ratio CL CU vCL CU

1.126 1.126 1.126 1.126

1
1.121 1.223 1.256 1.759

1
1.165 1.399 1.566 3.496

1
1.241 1.483 1.785 7.132

1
1.308 1.497 1.868 14.376

Table 7. ER with (p- 1)-order equilibration and (p+ 1)-degree polynomial space:
Laplace's equation. Range of the effectivity index as a function of the aspect-ratio
for the Union-Jack and the Criss-Cross pattern.
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ER with linear equilibration and

(p+ 1)-degree bubble-space

Cubic elements

Regular Chevron Union-Jack Criss-Cross
Grid-material Pattern Pattern Pattern Pattern
orientation 0 CL CU CL CU CL CU CL CU

0 .948 1.000 .948 9.194 .948 9.194 .368 1.033
5 .945 1.000 .948 3.136 .948 2.863 .457 1.033
10 .935 1.000 .949 1.607 .948 1.234 .609 1.033
15 .920 1.000 .948 1.059 .855 1.052 .701 1.033
20 .903 1.000 .702 1.032 .780 1.034 .736 1.033
25 .891 1.000 .619 1.024 .736 1.033 .780 1.034
30 .886 1.000 .564 1.020 .701 1.033 .855 1.052
35 .883 1.000 .526 1.018 .609 1.033 .948 1.234
40 .881 1.000 .561 1.017 .457 1.033 .948 2.863
45 .881 1.000 .641 1.017 .368 1.033 .948 9.194
50 .881 1.000 .725 1.017 .457 1.033 .948 2.863
55 .883 1.000 .526 1.018 .609 1.033 .948 1.234
60 .886 1.000 .567 1.020 .701 1.033 .855 1.052
65 .882 1.000 .619 1.024 .736 1.033 .780 1.034
70 .891 1.000 .702 1.032 .780 1.034 .736 1.033
75 .908 1.000 .948 .1.059 .855 1.052 .701 1.033
80 .935 1.000 .948 1.607 .948 1.234 .609 1.033
85 .945 1.000 .948 3.136 .948 2.863 .457 1.033
90 .948 1.000 .948 9.194 .948 9.194 .368 1.033

Table 8a. ER with linear equilibration and (p + 1)-degree bubble-space: Or-
thotropic heat-conduction (1. < Kmi .  K,.. < 1000.), "harmonic" solutions,
cubic elements. Range of the effectivity-index for the four patterns as a function
of the grid-material orientation.

58



ER with p-order equilibration and

(p+i )-degree bubble-space

Cubic elements

Regular Chevron Union-Jack Criss-Cros
Grid-material Pattern Pattern Pattern Pattern
orientation 9

__ ____ ic, Cu e C

0 .948 1.000 .948 1.000 .948 1.319 .710 1.319
5 .945 1.000 .948 1.000 .948 1.319 .723 1.319
10 .935 1.000 .836 1.000 .879 1.319 .716 1.319
15 .920 1.000 .707 1.000 .814 1.319 .711 1.319
20 .903 1.000 .642 1.000 .764 1.319 .729 1.319
25 .891 1.000 .592 1.000 .729 1.319 .764 1.319
30 .886 1.000 .547 1.000 .711 1.319 .814 1.319
35 .883 1.000 .517 1.000 .716 1.319 .879 1.319
40 .881 1.000 .562 1.000 .723 1.319 .955 1.319
45 .881 1.000 .627 1.000 .710 1.319 .948 1.319
50 .881 1.000 .724 1.000 .723 1.319 .955 1.319
55 .883 1.000 .807 1.000 .716 1.319 .879 1.319
60 .886 1.000 .547 1.000 .711 1.319 .814 1.319
65 .882 1.000 .592 1.000 .729 1.319 .764 1.319
70 .891 1.000 .642 1.000 .764 1.319 .729 1.319
75 .908 1.000 .707 1.000 .814 1.319 .711 1.319
80 .935 1.000 .836 1.000 .879 1.319 .716 1.319
85 .945 1.000 .948 1.000 .955 1.319 .723 1.319
90 .948 1.000 .948 1.000 .948 1.319 .710 1.319

Table 8b. ER with p-order equilibration and (p + 1)-degree bubble-space: Or-
thotropic heat-conduction (1. _< Km. 5 K. < 1000.), "harmonic" solutions,
cubic elements. Range of the effectivity-index for the four patterns as a function
of the grid-material orientation.
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ER with linear equilibration and
(p+l)-degree polynomial space

Cubic elements

Regular Chevron Union-Jack Criss-Cross
Grid-material Pattern Pattern Pattern Pattern
orientation 0 CL I 'CU - - -C- CU Ci CU

0 1.000 1.527 1.000 22.087 1.000 22.140 1.000 34.699
5 1.000 5.361 1.000 21.025 1.000 19.379 1.000 33.102
10 1.000 10.894 1.000 18.335 1.000 12.595 1.000 28.936
15 1.000 14.925 1.000 15.324 1.000 11.675 1.000 23.462
20 1.000 17.750 1.000 16.763 1.000 14.684 1.000 18.337
25 1.000 19.568 1.000 19.546 1.000 18.337 1.000 14.684
30 1.000 20.775 1.000 21.827 1.000 23.462 1.000 11.675
35 1.000 21.631 1.000 24.216 1.000 28.936 1.000 12.595
40 1.000 22.180 1.000 27.936 1.000 33.102 1.000 19.379
45 1.000 22.373 1.000 30.648 1.000 34.699 1.000 22.140
50 1.000 22.180 1.000 27.935 1.000 33.102 1.000 19.379
55 1.000 21.631 1.000 24.216 1.000 28.936 1.000 12.595
60 1.000 20.775 1.000 21.627 1.000 23.462 1.000 11.675
65 1.000 19.568 1.000 19.545 1.000 18.337 1.000 14.684
70 1.000 17.750 1.000 16.762 1.000 14.684 1.000 18.337
75 1.000 14.925 1.000 15.319 1.000 11.675 1.000 23.462
80 1.000 10.894 1.000 18.335 1.000 12.595 1.000 28.936
85 1.000 5.896 1.000 21.025 1.000 19.379 1.000 33.102
90 1.000 1.528 1.000 22.087 1.000 22.140 1.000 34.699

Table 8c. ER with linear equilibration and (p + 1)-degree polynomial space:
Orthotropic heat-conduction (1. < Kmiu _ Km.. < 1000.), "harmonic" solutions,
cubic elements. Range of the effectivity-index for the four patterns as a function
of the grid-material orientation.
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ER with p-order equilibration and
(p-+1)-degree polynomial space

Cubic elements

Regular Chevron Union-Jack Criss-Cross
Grid-material Pattern Pattern Pattern Pattern

0 1.000 1.522 1.000 1.523 1.000 1.547 1.000 2.295
5 1.000 5.832 1.000 5.640 1.000 5.369 1.000 6.617
10 1.000 10.578 1.000 10.260 1.000 8.311 1.000 10.268
15 1.000 14.338 1.000 14.114 1.000 9.263 1.000 11.515
20 1.000 17.104 1.000 17.037 1.000 10.026 1.000 11.141
25 1.000 19.028 1.000 18.904 1.000 11.141 1.000 10.026
30 1.000 20.278 1.000 19.650 1.000 11.515 1.000 9.263
35 1.000 21.017 1.000 19.264 1.000 10.268 1.000 8.311
40 1.000 21.390 1.000 17.974 1.000 6.617 1.000 5.369
45 1.000 21.502 1.000 16.649 1.000 2.295 1.000 1.547
50 1.000 21.390 1.000 17.974 1.000 6.617 1.000 5.369
55 1.000 21.017 1.000 19.264 1.000 10.268 1.000 8.311
60 1.000 20.278 1.000 19.650 1.000 11.515 1.000 9.263
65 1.000 19.028 1.000 18.904 1.000 11.141 1.000 10.026
70 1.000 17.104 1.000 17.037 1.000 10.026 1.000 11.141
75 1.000 14.338 1.000 14.114 1.000 9.263 1.000 11.515
80 1.000 10.578 1.000 10.260 1.000 8.311 1.000 10.268
85 1.000 5.832 1.000 5.663 1.000 5.369 1.000 6.617
90 1.000 1.523 1.000 1.412 1.000 1.547 1.000 2.295

Table 8d. ER with p-order equilibration and (p + 1)-degree polynomial space:
Orthotropic heat-conduction (1. _< K,,, : K. < 1000.), "harmonic" solutions,
cubic elements. Range of the effectivity-index for the four patterns as a function
of the grid-material orientation.
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ER with p-order equilibration and
(p+2)-degree polynomial-space

Cubic elements

Estimator based on Estimator based on

Grid-material the optimal constant Ladeveze's recipe

orientation 0 Regular Criss-Cross Regular Criss-Cross
Pattern Pattern Pattern Pattern

0 1.522 (1.424) 2.296 1.489 (1.514) 2.296
5 5.295 6.606 5.851 6.694
10 8.487 10.370 10.821 10.390
15 14.354 11.535 15.149 11.583
20 17.130 11.661 18.607 11.793
25 19.065 11.701 21.183 11.991
30 20.326 10.361 22.725 10.865
35 21.075 8.313 23.259 8.731
40 21.454 5.315 22.803 5.393
45 21.568 1.523 21.567 1.701
50 21.454 5.315 22.803 5.393
55 21.075 8.313 23.260 8.731
60 20.326 10.361 22.725 10.865
65 19.065 11.700 21.183 11.989
70 17.130 11.661 18.641 11.793
75 14.354 11.535 15.149 11.583
80 10.585 10.370 10.822 10.390
85 5.833 6.606 5.851 6.694
90 1.517 (1.424) 2.296 1.489 (1.514) 2.296

Table 9. ER with p-order equilibration and (p+2)-degree polynomial equilibration
and p-order polynomial-space: Orthotropic heat-conduction (1. < K,, K,.. ":
1000.), "harmonic" solutions, cubic elements. Range of the effectivity-index for the
Regular and the Criss-Cross pattern as a function of the grid-material orientation.
The terms in the parentheses were computed using (p + 3)-polynomial space.
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ER with O-order equilibration and
(p+3)-degree polynomial space

Criss-Cross pattern

Cubic elements

Aspect CL CU
Ratio _____

1
1.000 4.583

1
1.338 2.773

1
1.685 4.636

1
1.931 8.744

1
2.030 17.207

Table 10. ER with 0-order equilibration and (p + 3)-degree polynomial space:
Laplaces equation, Criss-Cross pattern, cubic elements. Range of the effectivity
index as a function of the aspect-ration for the Criss-Cross pattern.
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ER with linear equilibration and
(p+l)-degree bubble-space

Regular Pattern

Aspect p = 2 p = 3 p 4

Ratio CL CU CL CU CL rCU

1
1- 1.000 1.000 1.000 1.000 1.000 1.000

1
1 1.000 1.000 1.000 1.000 1.000 1.000

11 1.000 1.000 1.000 1.000 1.000 1.000

1 ~1.000 1.000 1.000 1.000 1.000 1.000

1-6 1.000 1.000 1.000 1.000 1.000 1.000

Table Ua. ER with linear equilibration and (p + 1)-degree bubble-space: Elas-
ticity problem, "harmonic" solution. Range of the effectivity index as a function
of the aspect-ratio for the Regular pattern.
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ER with linear equilibration and
(p+l 1)-degree bubble-space

Chevron Pattern

Aspect p = 2 p= 3  p = 4

Ratio CL CU CL CU CL CU

11 0.915 1.011 0.997 1.201 0.989 1.249

1
0.905 1.032 0.982 1.882 0.993 1.658

1
0.951 1.018 1.000 3.668 1.000 2.333

1
0.985 1.006 1.000 7.667 1.000 4.820

1
0.996 1.002 1.000 15.649 1.000 10.602

Table lib. ER with linear equilibration and (p + 1)-degree bubble-space: Elas-
ticity problem, "harmonic" solution. Range of the effectivity index as a function
of the aspect-ratio for the Chevron pattern.
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ER with linear equilibration and
(p+1)-degree bubble-space

Union-Jack Pattern

Aspect p = 2 p = 3 p 4
Ratio CL CU CL CU CL CU

1 0.929 0.992 1.019 1.451 0.980 1.063

1
0.948 0.997 0.998 1.879 0.997 1.441

1
0.978 0.999 0.999 3.239 1.000 2.514

4
1 0.994 1.000 1.000 7.148 1.000 5.280

16 0.998 1.000 1.000 15.308 1.000 10.991

Table LIc. ER with linear equilibration and (p+l)-degree bubble-space: Elasticity
problem, "harmonic" solutions. Range of the effectivity index as a function of the
aspect-ratio for the Union-Jack pattern.
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ER with linear equilibration and
(p+l)-degree bubble-space

Criss-Cross Pattern

Aspect p = 2 p = 3  p 4

Ratio CL CU CL CU CL CU

11- 0.945 0.992 1.034 1.451 0.985 1.063

1
1 0.806 0.999 0.884 1.352 0.925 1.011

1
1 0.737 0.996 0.739 1.013 0.811 0.994

1
0.715 0.999 0.674 0.854 0.720 0.914

8
1 0.709 1.000 0.653 0.819 0.687 0.859

Table 11d. ER with linear equilibration and (p + 1)-degree bubble-space: Elas-
ticity problem, "harmonic" solutions. Range of the effectivity index as a function
of the aspect-ratio for the Criss-Cross pattern.
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ER with p-order equilibration and
(p+1)-degree bubble-space

Regular Pattern

Aspect p = 2 p = 3  p 4

Ratio CL CU CL CU CL CU

1
1.000 1.000 1.000 1.000 1.000 1.000

1
1 1.000 1.000 1.000 1.000 1.000 1.000

1
1.000 1.000 1.000 1.000 1.000 1.000

1
~1.000 1.000 1.000 1.000 1.000 1.000

Table 12a. ER with p-order equilibration and (p + 1)-degree bubble-space: Elas-
ticity problem, "harmonic" solution. Range of the effectivity index as a function
of the aspect-ratio for the Regular pattern.
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ER with p-order equilibration
(p+ 1)-degree bubble-space

Chevron Pattern

Aspect p= 2  p= 3  p=4
Ratio CL CU CL C, CL CU

11" 0.915 1.011 0.999 1.066 0.990 1.129

1
1 0.905 1.032 0.886 1.031 0.946 1.253

1 0.951 1.018 0.919 1.002 0.925 1.188

11 0.985 1.006 0.970 1.000 0.955 1.053

8
1 0.996 1.002 0.992 1.000 0.984 1.013

Table 12b. ER with p-order equilibration and (p + 1)-degree bubble-space: Elas-
ticity problem, "harmonic" solution. Range of the effectivity index as a function
of the aspect-ratio for the Chevron pattern.
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ER with p-order equilibration and
(p+l)-degree bubble-space

Union-Jack Pattern

Aspect P = 2  p = 3 p = 4
Ratio CL CU CL CU CL CU

11 0.929 0.992 0.984 1.268 0.945 1.077

1
1 0.948 0.997 0.901 1.299 0.910 1.047

1
0.978 0.999 0.928 1.127 0.914 1.004

1 0.994 1.000 0.969 1.029 0.957 1.000

1
0.998 1.000 0.990 1.007 0.986 1.000

Table 12c. ER with p-order equilibration and (p + 1)-degree bubble-space: Elas-
ticity problem, "harmonic" solutions. Range of the effectivity index as a function
of the aspect-ratio for the Union-Jack pattern.
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ER with p-order equilibration and
(p+l1)-degree bubble-space

Criss-Cross Pattern

Aspect p = 2  p = 3 p = 4
Ratio CL Cu .. CL CU CL CU

1
0.945 0.992 0.984 1.268 0.945 1.079

0.806 0.999 0.880 1.272 0.846 1.180

1
0.737 0.996 0.811 1.076 0.808 1.115

1
10.715 0.999 0.743 0.952 0.818 1.144

0.709 1.000 0.717 0.817 0.749 0.984

Table 12d. ER with p-order equilibration and (p + 1)-degree bubble-space: Elas-
ticity problem, "harmonic" solutions. Range of the effectivity index as a function
of the aspect-ratio for the Criss-Cross pattern.
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ER with linear equilibration and
(p+3)-degree polynomial space

Cubic element

Regular Chevron Union-Jack Criss-Cross

Aspect Pattern Pattern Pattern Pattern
Ratio ___ ___

CL CU CL CU TL CU CL CU

1.061 2.803 1.231 3.661 1.411 4.373 1.423 4.373

1.089 4.217 1.529 8.211 1.274 8.383 1.339 10.059

1
1.022 8.201 2.129 28.229 2.291 24.943 1.206 39.633

1
1.005 16.171 2.909 115.549 2.875 107.956 1.155 166.903

1.001 32.162 3.034 471.452 3.039 461.886 1.156 681.244

Table 13a. ER with linear equilibration and (p + 3)-degree polynomial space:

Elasticity problem, "harmonic" solutions, cubic elements. Range of the effectivity
index for the four patterns as a function of the aspect-ratio.
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ER with p-order equilibration and full (p+3) space

Cubic element

Regular Chevron Union-Jack Criss-Cross
Aspect Pattern Pattern Pattern PatternRatio __ ___ _ __ _ _ _ _ __ _ _

CL CU CL CU CL CO CL  CU

1 - 1.361 2.590 1.623 2.254 1.508 2.088 1.508 2.088

1 1.177 3.695 1.351 2.419 1.283 3.362 1.375 4.168

1 1.023 7.034 1.246 6.165 1.123 7.039 1.564 9.703

1.003 13.616 1.124 13.074 1.035 13.654 2.577 20.748

T6 1.001 26.921 1.041 26.622 1.007 26.945 2.946 42.385

Table 13b. ER with p-order equilibration and (p + 3)-degree polynomial space:
Elasticity problem, "harmonic" solutions, cubic elements. Range of the effectivity
index for the four patterns as a function of the aspect-ratio.
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ER with p-order equilibration using the
optimal constants and (p+3)-degree polynomial space

Cubic element

Regular Chevron Union-Jack Criss-Cross
Aspect Pattern Pattern Pattern Pattern
Ratio __ ___ _ __ _ _ _ _

CL CU CL CU CL CU CL CU

I1 1.358 2.251 1.486 2.253 1.389 1.558 1.398 1.576
1

1 1.019 4.112 1.245 3.641 1.100 3.062 1.212 6.597
4

11 1.002 7.294 1.124 7.017 1.025 5.538 1.274 13.215
8

1- j 1.001 13.651 1.041 13.504 1.006 9.901 1.306 25.568

Table 14. ER with p-order equilibration uusing the optimal constants and (p+3)-
degree polynomial-space: Elasticity problem, "harmonic" solutions, cubic elements.
Range of the effectivity index for the four patterns as function of the aspect-ratio.
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Mesh-cell at mesh interface

Cubic elements of the Tensor-product family

Grid-material ER - B ER1B ER3B
orientation 9 C - CU  CL  CU  CL CU

-90.0 1.00808 1.05823 1.00806 1.03806 1.00806 1.00806
-80.0 1.03738 1.09775 1.03742 1.08768 1.03743 1.03768
-70.0 1.03288 1.17191 1.01595 1.14957 1.01614 1.14744
-60.0 1.02945 1.41395 1.02932 1.39318 1.01734 1.19251
-50.0 1.04011 2.07578 1.04596 2.03430 1.02194 1.23450
-40.0 1.04983 2.28256 1.05117 2.20244 1.01196 1.30230
-30.0 1.06226 1.80877 1.06454 1.80878 1.00804 1.20877
-20.0 1.08601 1.54419 1.08606 1.47620 1.00710 1.17612
-10.0 1.15133 1.42458 1.15147 1.35448 1.00097 1.11417
0.0 1.19723 1.37793 1.21104 1.31723 1.00836 1.06134
10.0 1.15135 1.42163 1.15135 1.35173 1.00080 1.11417
20.0 1.08594 1.54437 1.08593 1.47639 1.00710 1.17612
30.0 1.06237 1.80872 1.06261 1.80872 1.00653 1.20890
40.0 1.05074 2.28297 1.05233 2.20165 1.01228 1.30170
50.0 1.04019 2.07578 1.04367 2.03429 1.02198 1.23450
60.0 1.03276 1.41442 1.03195 1.39379 1.01719 1.18998
70.0 1.03241 1.16788 1.01624 1.14720 1.01020 1.14679
80.0 1.03747 1.09750 1.03750 1.08777 1.03751 1.03778
90.0 1.00808 1.05848 1.00806 1.03806 1.00806 1.00806

Table 15a. The estimators ER-B, ERIB, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material-orthotropy for the three element
types. Poisson's equation, mesh-cell at the mesh-interface shown in Fig. 6a, cubic
elements (p = 3)of the tensor-product family. Range of the effectivity index as a

function of the grid-material orientation for ,,,-- = 100.
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Mesh-cell at mesh interface

Cubic elements of the Serendipity family

Grid-material ER - B ERIB ER3B
orientation 0 CL CU CL CU CL CU

-90.0 .45030 1.81325 .65034 1.01030 1.00299 1.00299
-80.0 .57480 1.93323 .77476 1.03129 1.00000 1.02013
-70.0 .63578 2.37235 .93547 1.17736 1.00002 1.08318
-60.0 .84709 2.79243 1.04713 1.49640 1.00075 1.12035
-50.0 .95734 3.15292 1.05772 1.75192 1.00990 1.17681
-40.0 1.08648 4.21326 1.08641 2.44247 1.07883 1.23234
-30.0 .99596 3.68377 1.09593 1.88771 1.06093 1.18993
-20.0 .82493 3.30364 1.12495 1.50364 1.04825 1.13941
-10.0 .75818 2.99357 1.15817 1.29552 1.03379 1.09494
0.0 .61412 2.37870 1.16011 1.16010 1.01940 1.07940
10.0 .75819 2.99359 1.15884 1.29552 1.03383 1.09547
20.0 .82490 3.30366 1.12836 1.50356 1.04824 1.13976
30.0 .99596 3.68374 1.09554 1.88784 1.06069 1.18003
40.0 1.08642 4.21328 1.08606 2.44232 1.07817 1.23169
50.0 .95734 3.15297 1.05583 1.75235 1.01004 1.17724
60.0 .84708 2.79237 1.04716 1.49614 1.00209 1.12100
70.0 .63576 2.37229 .93583 1.17737 1.00014 1.08280
80.0 .57482 1.93340 .77521 1.03128 1.00025 1.02012
90.0 .45031 1.81333 .65032 1.01031 1.00299 1.00299

Table 15b. The estimators ER-B, ERIB, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material-orthotropy for the three element
types. Poisson's equation, mesh-cell at the mesh-interface shown in Fig. 6a, cubic
elements (p = 3)of the serendipity family. Range of the effectivity index as a

function of the grid-material orientation for K.., = 100.

K6.
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Mesh-cell at mesh interface

Cubic elements of the Intermediate family

Grid-material ER - B ERIB ER3B

orientation 0 CL CU CL CU CL CU

-90.0 1.00646 1.19619 1.00619 1.13627 1.00804 1.09803
-80.0 1.02773 1.22792 1.02773 1.18722 1.03747 1.11723
-70.0 1.03000 1.32004 1.02117 1.24701 1.01612 1.16716
-60.0 1.02358 1.42660 1.00758 1.31664 1.01735 1.21258
-50.0 1.03656 1.73228 1.01656 1.60241 1.02194 1.25450
-40.0 1.05695 2.50016 1.02641 2.26031 1.01190 1.33234
-30.0 1.07807 1.98485 1.04833 1.83414 1.00809 1.30871
-20.0 1.09611 1.86558 1.07451 1.66352 1.00711 1.25612
-10.0 1.13179 1.70922 1.11121 1.52940 1.00096 1.21419
0.0 1.27109 1.57109 1.18316 1.42842 1.00835 1.18134

10.0 1.13197 1.70673 1.11121 1.52346 1.00082 1.21415
20.0 1.09617 1.86507 1.07544 1.66489 1.00713 1.25611
30.0 1.07941 1.98440 1.04836 1.83343 1.00653 1.30897
40.0 1.05705 2.49968 1.02727 2.25884 1.01224 1.33172
50.0 1.03744 1.73254 1.01697 1.60207 1.02193 1.25453
60.0 1.02205 1.42647 1.00199 1.31722 1.01717 1.21999
70.0 1.01294 1.31744 1.01334 1.24693 1.01023 1.16672
80.0 1.02779 1.22801 1.02829 1.18717 1.03755 1.11770
90.0 1.00624 1.19631 1.00672 1.13344 1.00807 1.09806

Table 15c. The estimators ER-B, ERIB, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material-orthotropy for the three element
types. Poisson's equation, mesh-cell at the mesh-interface shown in Fig. 6a, cubic
elements (p = 3) of the intermediate family. Range of the effectivity index as a

function of the grid-material orientation for K. = 100.
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Mesh-cell at mesh interface

Quartic elements of the Tensor-product family

Grid-material ER - B ER1B ER4B

orientation 0 CL Cu CL CU CL CU

-90.0 1.01512 1.01520 1.00505 1.01561 1.00194 1.00891
-80.0 1.01811 1.07782 1.00856 1.04707 1.00743 1.03572
-70.0 1.02510 1.23828 1.00536 1.17824 1.01021 1.09113
-60.0 1.03977 1.70711 1.00977 1.40742 1.01727 1.11901
-50.0 1.05275 2.71473 1.00214 1.81469 1.02195 1.14497
-40.0 1.06121 2.93948 1.00105 2.23961 1.03193 1.22426
-30.0 1.06493 2.37050 1.00433 2.07077 1.01281 1.15825
-20.0 1.07503 1.85533 1.00522 1.79591 1.00793 1.13654
-10.0 1.10495 1.54454 1.00476 1.47406 1.00095 1.11423
0.0 1.22068 1.48029 1.00056 1.31031 1.00882 1.09182
10.0 1.10770 1.54488 1.00747 1.47463 1.00086 1.11418
20.0 1.07510 1.85575 1.00584 1.79518 1.00717 1.13611
30.0 1.06494 2.36943 1.00422 2.07032 1.01253 1.15893
40.0 1.06008 2.93890 1.00051 2.23889 1.03195 1.22394
50.0 1.05225 2.71435 1.00283 1.81441 1.02194 1.14456
60.0 1.03954 1.70695 1.00994 1.40694 1.01789 1.11897
70.0 1.02531 1.23811 1.00506 1.17816 1.01020 1.09678
80.0 1.01567 1.07786 1.00521 1.04788 1.00753 1.03562
90.0 1.01512 1.01692 1.00503 1.01634 1.00194 1.00893

Table 16a. The estimators ER-B, ERIB, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material-orthotropy for the three element
types. Poisson's equation, mesh-cell at the mesh-interface shown in Fig. 6a, quartic
elements (p = 4) of the tensor-product family. Range of the effectivity index as a

function of the grid-material orientation for Km - = 100.
Kmi7
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Mesh-cell at mesh interface

Quartic elements of the Serendipity family

Grid-material ER - B ER1B ER4B
orientation 0 eC- C, eC. CL CU

-90.0 .41231 1.82975 .52232 1.92924 1.00087 1.00094
-80.0 .50482 1.93265 .61485 2.13246 1.00192 1.00973
-70.0 .54283 2.40713 .74286 2.64717 1.00946 1.02536
-60.0 .61126 2.91525 .81123 2.91521 1.01560 1.16481
-50.0 .67252 3.39188 .91251 3.39122 1.03621 1.19702
-40.0 .73732 4.47956 .94730 4.14954 1.04669 1.24909
-30.0 .66297 3.96152 .86293 3.76155 1.03985 1.17035
-20.0 .60244 3.41097 .83246 3.31040 1.03274 1.14661
-10.0 .61420 2.92150 .81427 2.72127 1.03081 1.12464
0.0 .54512 2.63115 .80510 2.41464 1.02692 1.11610
10.0 .61420 2.92150 .81429 2.72153 1.03081 1.12701
20.0 .60244 3.41097 .83243 3.31091 1.03824 1.14505
30.0 .66297 3.96152 .86291 3.76159 1.04053 1.16866
40.0 .73732 4.47956 .94734 4.14920 1.04631 1.24937
50.0 .67252 3.39188 .91253 3.39183 1.03662 1.19744
60.0 .61126 2.91525 .81129 2.91521 1.01532 1.16461
70.0 .54283 2.40713 .74280 2.64415 1.00893 1.02687
80.0 .50482 1.93265 .61489 2.13266 1.00183 1.00952
90.0 .41231 1.82975 .52233 1.92429 1.00084 1.00094

Table 16b. The estimators ER-B, ER1B, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material-orthotropy for the three element
types. Poisson's equation, mesh-cell at the mesh-interface shown in Fig. 6a, quartic
elements (p = 4) of the serendipity family. Range of the effectivity index as a

function of the grid-material orientation for K.. = 100.
Km9
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Mesh-cell at mesh interface

Quartic elements of the Intermediate family

Grid-material ER -B ERIB ER4B

orientation 0 CL Cu ZL CU CL CU

-90.0 1.0170 1.1956 1.0154 1.1456 1.0019 1.0089
-80.0 1.0145 1.4270 1.0148 1.2170 1.0074 1.0357
-70.0 1.0293 1.6582 1.0315 1.4582 1.0102 1.0911
-60.0 1.0377 2.2074 1.0429 1.9074 1.0172 1.1490
-50.0 1.0571 3.1146 1.0516 2.4146 1.0219 1.1949
-40.0 1.0660 3.4396 1.0680 3.0396 1.0319 1.2842
-30.0 1.0633 2.9647 1.0573 2.6647 1.0128 1.2082
-20.0 1.0752 2.2559 1.0667 2.0559 1.0079 1.1365
-10.0 1.1097 1.9440 1.1097 1.6440 1.0009 1.1142
0.0 1.2275 1.6803 1.1075 1.4803 1.0088 1.0918
10.0 1.1014 1.9446 1.1106 1.6446 1.0008 1.1141
20.0 1.0758 2.2551 1.0658 2.0551 1.0071 1.1361
30.0 1.0602 2.9693 1.0572 2.6693 1.0125 1.2089
40.0 1.0665 3.4388 1.0679 3.0388 1.0319 1.2839
50.0 1.0508 3.1144 1.0516 2.4144 1.0219 1.1945
60.0 1.0379 2.2069 1.0429 1.9069 1.0178 1.1489
70.0 1.0260 1.6581 1.0314 1.4581 1.0102 1.0967
80.0 1.0142 1.4278 1.0148 1.2178 1.0075 1.0356
90.0 1.0170 1.1960 1.0154 1.1460 1.0019 1.0089

Table 16c. The estimators ER-B, ERIB, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material-orthotropy for the three element
types. Poisson's equation, mesh-cell at the mesh-interface shown in Fig. 6a, quartic
elements (p = 4) of the intermediate family. Range of the effectivity index as a

function of the grid-material orientation for . = 100.
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Mesh-cell at mesh interface

Quintic elements of the Tensor-product family

Grid-material ER - B ER1B ER5B
orientation 0 CL CU CL CU CL CU

-90.0 1.0050 1.1056 1.0043 1.0966 1.0014 1.0094
-80.0 1.0185 1.3770 1.0144 1.1271 1.0064 1.0427
-70.0 1.0253 1.6682 1.0251 1.2642 1.0126 1.0891
-60.0 1.0397 1.9074 1.0393 1.4044 1.0172 1.1190
-50.0 1.0521 2.7446 1.0525 2.1418 1.0246 1.1449
-40.0 1.0610 3.4386 1.0996 3.0319 1.0289 1.2242
-30.0 1.0943 2.9707 1.0945 2.4417 1.0128 1.1582
-20.0 1.1752 2.1559 1.0758 2.1051 1.0079 1.1365
-10.9 1.2649 1.9440 1.0645 1.8844 1.0009 1.1142
0.0 1.3006 1.6163 1.0903 1.5351 1.0088 1.0987

10.0 1.2677 1.9446 1.0672 1.8844 1.0009 1.1142
20.0 1.1751 2.1551 1.0753 2.1051 1.0078 1.1364
30.0 1.0949 2.9693 1.0940 2.4413 1.0128 1.1583
40.0 1.0600 3.4388 1.0995 3.0319 1.0289 1.2240
50.0 1.0522 2.7444 1.0523 2.1419 1.0246 1.1445
60.0 1.0395 1.9069 1.0398 1.4061 1.0172 1.1189
70.0 1.0253 1.6681 1.0253 1.2641 1.0126 1.0888
80.0 1.0156 1.3778 1.0151 1.1272 1.0065 1.0426
90.0 1.0051 1.1063 1.0043 1.0969 1.0014 1.0094

Table 17a. The estimators ER-B, ER1B, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material-orthotropy for the three element
types. Poisson's equation, mesh-cell at the mesh-interface shown in Fig. 6a, quintic
elements (p = 5) of the tensor-product family. Range of the effectivity index as a

function of the grid-material orientation for Kn,. = 10L
Kin
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Mesh-cell at mesh interface

Quintic elements in the Serendipity family

Grid-material ER - B ER1B ER5B
orientation 0 CL CU CL CU CL CU

-90.0 .4012 4.9156 1.0210 1.4116 1.0001 1.0001
-80.0 .4052 5.3132 1.0007 1.4136 1.0011 1.0018
-70.0 .5026 5.8283 1.0066 1.6283 1.0093 1.0255
-60.0 .5256 6.2858 1.0256 1.9848 1.0256 1.1845
-50.0 .6663 7.4978 1.0663 2.3978 1.0666 1.2276
-40.0 .7261 8.2192 1.1261 3.2192 1.0265 1.3196
-30.0 .6893 7.7718 1.1893 2.7718 1.0892 1.2713
-20.0 .6325 6.3169 1.2373 2.3169 1.0388 1.1966
-10.0 .5620 5.8680 1.2620 1.8680 1.0601 1.1662
0.0 .5669 4.9586 1.2669 1.7586 1.0664 1.1337
10.0 .5602 5.8659 1.2602 1.8689 1.0599 1.1672
20.0 .6371 6.3171 1.2371 2.3171 1.0387 1.1959
30.0 .6900 7.7684 1.1900 2.7684 1.0909 1.2686
40.0 .7262 8.2195 1.1263 3.2194 1.0262 1.3196
50.0 .6682 7.4975 1.0681 2.3975 1.0668 1.2275
60.0 .5261 6.2847 1.0261 1.9847 1.0258 1.1845
70.0 .4065 5.8285 1.0065 1.6283 1.0063 1.0263
80.0 .4057 5.3135 1.0210 1.4135 1.0008 1.0019
90.0 .4012 4.9116 1.0010 1.4115 1.0001 1.0001

Table 17b. The estimators ER-B, ER1B, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material-orthotropy for the three element
types. Poisson's equation, mesh-cell at the mesh-interface shown in Fig. 6a, quintic
elements (p = 5) of the serendipity family. Range of the effectivity index as a

function of the grid-material orientation for K'. - 100.
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Mesh-cell with two levels of refinement

Cubic elements of the Tensor-product family

Grid-material ER - B ER1B ER3B

orientation 0 -L- Cu CL CU CL CU

-90.0 1.0250 1.1456 1.0151 1.0461 1.0099 1.0191
-80.0 1.0455 1.3270 1.0173 1.2270 1.0179 1.0412
-70.0 1.0853 1.6682 1.0252 1.4612 1.0202 1.1011
-60.0 1.1397 1.9274 1.0393 1.8277 1.0272 1.2190
-50.0 1.1521 2.7446 1.0525 2.6742 1.0319 1.3449
-40.0 1.1610 3.4386 1.0616 3.0384 1.0519 1.4242

-30.0 1.0943 2.9307 1.0441 2.7307 1.0328 1.3589
-20.0 1.0752 2.1456 1.0357 2.1241 1.0279 1.2365
-10.0 1.0649 1.9441 1.0261 1.7433 1.0109 1.1742

0.0 1.0406 1.7310 1.0200 1.5710 1.0091 1.1018
10.0 1.0677 1.9446 1.0274 1.8352 1.0112 1.1636
20.0 1.0751 2.2456 1.0352 2.1754 1.0282 1.3361

30.0 1.0949 2.9993 1.0444 2.9293 1.0333 1.4568
40.0 1.1600 3.5388 1.0614 3.2391 1.0529 1.5242
50.0 1.1527 2.9444 1.0528 2.8720 1.0341 1.4445
60.0 1.1415 2.1304 1.0394 1.8277 1.0288 1.3183
70.0 1.0877 1.8681 1.0252 1.6616 1.0213 1.2067

80.0 1.0464 1.3978 1.0171 1.4251 1.0184 1.1416
90.0 1.0251 1.1449 1.0151 1.0463 1.0099 1.0191

Table 18a. The estimators ER-B, ER1B, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material orthotropy for the three element
types. Poisson's equation, periodic mesh-cell with two-levels of refinement shown
in Fig. 6b, cubic elements (p = 3) of the tensor-product family. Range of the

effectivity index as a function of the grid-material orientation for K,,.u = 100.
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Mesh-cell with two levels of refinement

Cubic elements of the Serendipity family

Grid-material ER- B ER1B ER3B

orientation 0 CL CU CL CU CL CU

-90.0 .4016 5.9158 .7226 4.7418 1.0001 1.0002
-80.0 .4251 6.3137 .8051 5.0137 1.0012 1.0018
-70.0 .4824 6.8285 .8524 5.5285 1.0093 1.0172
-60.0 .5052 7.2857 .9262 6.1051 1.0256 1.0856
-50.0 .5662 7.9975 .9366 6.6975 1.0666 1.1094
-40.0 .6461 8.2198 .9461 7.0198 1.0265 1.3001
-30.0 .6292 7.7713 .9292 6.7113 1.0892 1.2183
-20.0 .6125 7.3165 .9135 6.4235 1.0382 1.1604
-10.0 .5922 6.8685 .8922 5.9985 1.0601 1.1586
0.0 .5565 6.5589 .8565 5.4019 1.0664 1.1402
10.0 .5902 6.8655 .9902 5.9955 1.0592 1.1562
20.0 .6125 7.3172 .9135 6.4232 1.0387 1.1959
30.0 .6295 7.7683 .9295 6.7183 1.0909 1.1686
40.0 .6462 8.2195 .9462 7.1101 1.0262 1.2196
50.0 .5689 7.9972 .9359 6.6642 1.0668 1.1072
60.0 .5062 7.6104 .9062 6.0219 1.0252 1.0845
70.0 .4865 6.9421 .8525 5.4120 1.0063 1.0163
80.0 .4252 6.2217 .8052 4.8809 1.0008 1.0019
90.0 .4017 5.9157 .7226 4.7417 1.0001 1.0002

Table 18b. The estimators ER-B, ER1B, ERpB for meshes of square-elements
with local refinements: Sensitivity to the material orthotropy for the three element
types. Poisson's equation, periodic mesh-cell with two-levels of refinement shown
in Fig. 6b, cubic elements (p = 3) of the Serendipity family. Range of the effectivity

index as a function of the grid-material orientation for Km= = 100.
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Analysis of the effect of the order of equilibration
on the value of the effectivity index

Criss-Cross Pattern; Quartic elements

1
Aspect ratio = 1

4

4 4
p IIIh, - h11 2 b, (i, - eh,eh)Estimator 4 4=I

E IJell ,12 11jehI1l ,

Solution = Q1 + 0Q 2

ERIB 3.155727 -3.437173
ERpB 3.133369 -3.422308
ER1Pp+3 14.044716 -4.000000
ERpPp+3 4.587711 -4.000000

Solution = 0QI + Q2

ERIB 2.435774 -2.957068
ERpB 2.646988 -2.966098
ER1Pp+3 5.184388 -4.000000
ERpPp+3 7.359869 -4.000000

Table 19. Analysis of the effect of the order of equilibration on the value of the
effectivity index: Lapalce's equation, quartic elements, Criss-Cross pattern, aspect

1
ratio = 4. The square of the effectivity index in the pattern is:

4 4
E IIeN - Chllri 2 b,( - eh, )

K 2 (c( 0,h),Uhf +i=' 1 -+ -

Above we give the values of the second and third term of the above expansion for the
harmonic monomial Q(zI I 2) = Re((xl +iX2 )5 ) and Q2(XI, X2 ) = Jm((XI +iz 2)S).
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Equilibrated patch-residual estimator

Criss-Cross Pattern; Cubic elements

Grid Linear p-order

orientation 0 equilibration equilibration

CL CU CL

0 1.000 1.596 1.000 1.022
5 .988 3.065 .998 1.471
10 .974 2.188 .999 1.270
15 .967 1.608 .999 1.151
20 .987 1.953 .999 1.105
25 .996 1.395 .999 1.035
30 .997 1.418 1.000 1.156
35 .983 1.436 1.000 1.334
40 .989 1.428 .999 1.427
45 .995 1.077 .991 1.123
50 .988 1.428 .999 1.427
55 .983 1.436 1.000 1.334
60 .997 1.417 1.000 1.156
65 .997 1.395 .999 1.035
70 .987 1.954 .999 1.105
75 .968 1.608 .999 1.151
80 .974 2.188 .997 1.270
85 .988 3.066 .998 1.471
90 1.000 1.596 1.000 1.022

Table 20. The equilibrated patch-residual estimator with elementwise (p + 1)-
polynomial space: Orthtropic heat-conduction (1.< Kmn _< K,. <1000.), "har-
monic" solutions, cubic elements, Criss-Cross pattern. Comparison of the range of
the effectivity index as a function of the grid-material orientation for the estimator
based on linear and p-order equilibration.
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List of Figures
Fig. 1. Edge e with its normal n and the elements ro1, T,, connected to it.

Fig. 2. Locally periodic grid: A domain with a periodic mesh-subdomain covered
exactly by a periodic array of h-cells.

Fig. 3. Construction of the equilibrated residuals for meshes of triangles. The
vertex X with the elements rkx and the edges J' attached to it. n x are the
positive directions of the edge normals.

Fig. 4. Mesh patterns. The basic mesh-cells of triangular elements. (a) Regular
pattern; (b) Chevron pattern; (c) Union-Jack pattern; (d) Criss-Cross pattern.

Fig. 5. Construction of the equilibrated residuals for meshes of squares with
refinements. (a) The vertex X with elements Trk and the edges ex attached to it.
n x are the positive directions of the edge normals. Note that a side of an element
can consist of two edges; (b) The edges f and C2 on a side of an element and the
two linear shape functions A, A2 associated with this side. The regular nodes are
shown with a solid circle and the irregular nodes are indicated by a circle.

Fig. 6. Mesh patterns. The basic mesh-cells of square elements. (a) Interface
mesh. The shaded region indicates the elements n which the effectivity index was
computed; (b) Mesh-cell with two levels of refinement. The effectivity index is
computed for all the elements in the mesh-cell.
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The Laboratory for Numerical Analysis is an integral part of the Institute for Physical
Science and Technology of the University of Maryland, under the general administration of the
Director, Institute for Physical Science and Technology. It has the following goals:

To conduct research in the mathematical theory and computational implementation of
numerical analysis and related topics, with emphasis on the numerical treatment of
linear and nonlinear differential equations and problems in linear and nonlinear algebra.

To help bridge gaps between computational directions in engineering, physics, etc., and
those in the mathematical community.

To provide a limited consulting service in all areas of numerical mathematics to the
University as a whole, and also to government agencies and industries in the State of
Maryland and the Washington Metropolitan area.

To assist with the education of numerical analysts, especially at the postdoctoral level,
in conjunction with the Interdisciplinary Applied Mathematics Program and the
programs of the Mathematics and Computer Science Departments. This includes active
collaboration with government agencies such as the National Institute of Standards and
Technology.

To be an international center of study and research for foreign students in numerical
mathematics who are supported by foreign governments or exchange agencies
(Fulbright, etc.).

Further information may be obtained from Professor I. Babufka, Chairman, Laboratory for
Numerical Analysis, Institute for Physical Science and Technology, University of Maryland, College
Park, Maryland 20742-2431.


